Quickstart

作者: 小C菜鸟 | 来源:发表于2018-01-20 17:00 被阅读13次

    原文链接


    在几个简单的步骤中启动和运行Flink示例程序。

    设置:下载和启动Flink

    Flink运行在Linux, Mac OS X, and Windows。为了能够运行Flink,唯一的要求就是工作在Java 7.x(或更高)上。Windows用户,请查看Windows上运行Flink指南,它描述了在本地Windows上如何运行Flink。

    你可以通过以下命令检查Java安装的正确性:

    java -version
    
    

    如果您有Java 8,那么输出将是这样的:

    java version "1.8.0_111"
    Java(TM) SE Runtime Environment (build 1.8.0_111-b14)
    Java HotSpot(TM) 64-Bit Server VM (build 25.111-b14, mixed mode)
    
    

    Download and Unpack

    1. 下载页下载二进制包。您可以选择您喜欢的任何Hadoop/Scala组合。你可以选择任何你喜欢的Hadoop/Scala组合包。如果你计划使用文件系统,那么可以使用任何Hadoop版本。
    2. 进入下载目录。
    3. 解压下载的压缩包。
    $ cd ~/Downloads        # Go to download directory
    $ tar xzf flink-*.tgz   # Unpack the downloaded archive
    $ cd flink-1.4.1
    
    

    MacOS X

    对于MacOS X用户, 可以通过Homebrew安装Flink。

    $ brew install apache-flink
    ...
    $ flink --version
    Version: 1.2.0, Commit ID: 1c659cf
    

    启动一个本地Flink集群

    $ ./bin/start-local.sh  # Start Flink
    
    

    通过访问http://localhost:8081检查JobManager网页,确保所有组件都已运行。网页会显示一个有效的TaskManager实例。

    1195625042e58743ce16e6722da1fc2f.png

    您还可以通过检查日志目录中的日志文件来验证系统是否正在运行:

    $ tail log/flink-*-jobmanager-*.log
    INFO ... - Starting JobManager
    INFO ... - Starting JobManager web frontend
    INFO ... - Web frontend listening at 127.0.0.1:8081
    INFO ... - Registered TaskManager at 127.0.0.1 (akka://flink/user/taskmanager)
    

    阅读代码

    你可以在GitHub上找到这个SocketWindowWordCount例子的完整的scalajava的完整源代码。

    public class SocketWindowWordCount {
    
        public static void main(String[] args) throws Exception {
    
            // the port to connect to
            final int port;
            try {
                final ParameterTool params = ParameterTool.fromArgs(args);
                port = params.getInt("port");
            } catch (Exception e) {
                System.err.println("No port specified. Please run 'SocketWindowWordCount --port <port>'");
                return;
            }
    
            // get the execution environment
            final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    
            // get input data by connecting to the socket
            DataStream<String> text = env.socketTextStream("localhost", port, "\n");
    
            // parse the data, group it, window it, and aggregate the counts
            DataStream<WordWithCount> windowCounts = text
                .flatMap(new FlatMapFunction<String, WordWithCount>() {
                    @Override
                    public void flatMap(String value, Collector<WordWithCount> out) {
                        for (String word : value.split("\\s")) {
                            out.collect(new WordWithCount(word, 1L));
                        }
                    }
                })
                .keyBy("word")
                .timeWindow(Time.seconds(5), Time.seconds(1))
                .reduce(new ReduceFunction<WordWithCount>() {
                    @Override
                    public WordWithCount reduce(WordWithCount a, WordWithCount b) {
                        return new WordWithCount(a.word, a.count + b.count);
                    }
                });
    
            // print the results with a single thread, rather than in parallel
            windowCounts.print().setParallelism(1);
    
            env.execute("Socket Window WordCount");
        }
    
        // Data type for words with count
        public static class WordWithCount {
    
            public String word;
            public long count;
    
            public WordWithCount() {}
    
            public WordWithCount(String word, long count) {
                this.word = word;
                this.count = count;
            }
    
            @Override
            public String toString() {
                return word + " : " + count;
            }
        }
    }
    
    

    运行示例

    现在,我们将运行这个Flink应用程序。它将从一个套接字读取文本,每5秒打印出在前5秒内每一个不同单词的出现次数,即处理时间的滚动窗口,只要单词是浮动的。

    • 首先,我们使用netcat启动本地服务器。

      $ nc -l 9000
      
      
    • 提交Flink程序:

      $ ./bin/flink run examples/streaming/SocketWindowWordCount.jar --port 9000
      
      Cluster configuration: Standalone cluster with JobManager at /127.0.0.1:6123
      Using address 127.0.0.1:6123 to connect to JobManager.
      JobManager web interface address http://127.0.0.1:8081
      Starting execution of program
      Submitting job with JobID: 574a10c8debda3dccd0c78a3bde55e1b. Waiting for job completion.
      Connected to JobManager at Actor[akka.tcp://flink@127.0.0.1:6123/user/jobmanager#297388688]
      11/04/2016 14:04:50     Job execution switched to status RUNNING.
      11/04/2016 14:04:50     Source: Socket Stream -> Flat Map(1/1) switched to SCHEDULED
      11/04/2016 14:04:50     Source: Socket Stream -> Flat Map(1/1) switched to DEPLOYING
      11/04/2016 14:04:50     Fast TumblingProcessingTimeWindows(5000) of WindowedStream.main(SocketWindowWordCount.java:79) -> Sink: Unnamed(1/1) switched to SCHEDULED
      11/04/2016 14:04:51     Fast TumblingProcessingTimeWindows(5000) of WindowedStream.main(SocketWindowWordCount.java:79) -> Sink: Unnamed(1/1) switched to DEPLOYING
      11/04/2016 14:04:51     Fast TumblingProcessingTimeWindows(5000) of WindowedStream.main(SocketWindowWordCount.java:79) -> Sink: Unnamed(1/1) switched to RUNNING
      11/04/2016 14:04:51     Source: Socket Stream -> Flat Map(1/1) switched to RUNNING
      
      

    程序连接到套接字并等待输入。您可以检查web界面以验证作业是否按预期运行:

    jobmanager-2.png jobmanager-3.png

    单词在5秒的时间窗口(处理时间,滚动的窗口)被计算,并打印到stdout。监视任务管理器的输出文件,并在nc中写入一些文本(点击后按行发送到Flink行):

    $ nc -l 9000
    lorem ipsum
    ipsum ipsum ipsum
    bye
    
    The .out file will print the counts at the end of each time window as long as words are floating in, e.g.:
    
    $ tail -f log/flink-*-taskmanager-*.out
    lorem : 1
    bye : 1
    ipsum : 4
    
    

    通过下述命令停止Flink:

    $ ./bin/stop-local.sh

    相关文章

      网友评论

        本文标题:Quickstart

        本文链接:https://www.haomeiwen.com/subject/kkmtaxtx.html