美文网首页
Anaconda--笔记

Anaconda--笔记

作者: 万事皆成 | 来源:发表于2018-11-20 06:06 被阅读14次

介绍两个对于数据分析师最为重要的工具,即 Anaconda 和 Jupyter notebook。

Anaconda 是一个包含数据科学常用包的 Python 发行版本。它基于 conda ——一个包和环境管理器——衍生而来。你将使用 conda 创建环境,以便分隔使用不同 Python 版本和不同程序包的项目。你还将使用它在环境中安装、卸载和更新包。通过使用 Anaconda,处理数据的过程将更加愉快。

Jupyter notebook 是一种 Web 文档,能让你将文本、图像和代码全部组合到一个文档中。它事实上已经成为数据分析的标准环境。Jupyter notebook 源自 2011 年的 IPython 项目,之后迅速流行起来。在本课程的第二节课中,你将使用 Jupyter notebook 进行分析工作。

首先学习 Anaconda。

Anaconda

欢迎学习本课程,如何使用 Anaconda 来管理 Python 所用的包和环境。Anaconda 能让你在数据科学的工作中轻松安装经常使用的程序包。你还将使用它创建虚拟环境,以便更轻松地处理多个项目。Anaconda 简化了工作流程,并且解决了多个包和 Python 版本之间遇到的大量问题。

Anaconda 实际上是一个软件发行版,它附带了 conda、Python 和 150 多个科学包及其依赖项。应用程序 conda 是包和环境管理器。Anaconda 的下载文件比较大(约 500 MB),因为它附带了 Python 中最常用的数据科学包。如果只需要某些包,或者需要节省带宽或存储空间,也可以使用 Miniconda 这个较小的发行版(仅包含 conda 和 Python)。但你仍可以使用 conda 来安装任何可用的包,只是它自身没有附带这些包而已。

管理包

安装了 Anaconda 之后,管理包是相当简单的。要安装包,请在终端中键入 conda install package_name。例如,要安装 numpy,请键入 conda install numpy。
视频地址
https://s3.cn-north-1.amazonaws.com.cn/u-img/conda_install.mp4

你还可以同时安装多个包。类似 conda install numpy scipy pandas 的命令会同时安装所有这些包。还可以通过添加版本号(例如 conda install numpy=1.10)来指定所需的包版本。

Conda 还会自动为你安装依赖项。例如,scipy 依赖于 numpy,因为它使用并需要 numpy。如果你只安装 scipy (conda install scipy),则 conda 还会安装 numpy(如果尚未安装的话)。

大多数命令都是很直观的。要卸载包,请使用 conda remove package_name。要更新包,请使用 conda update package_name。如果想更新环境中的所有包(这样做常常很有用),请使用 conda update --all。最后,要列出已安装的包,请使用前面提过的 conda list

如果不知道要找的包的确切名称,可以尝试使用 conda search search_term 进行搜索。例如,我知道我想安装 Beautiful Soup,但我不清楚确切的包名称。因此,我尝试执行 conda search beautifulsoup

管理环境

如前所述,你可以使用 conda 创建环境以隔离项目。要创建环境,请在终端中使用 conda create -n env_name list of packages。在这里,-n env_name 设置环境的名称(-n 是指名称),而 list of packages 是要安装在环境中的包的列表。例如,要创建名为 my_env 的环境并在其中安装 numpy,请键入 conda create -n my_env numpy

创建环境时,可以指定要安装在环境中的 Python 版本。这在你同时使用 Python 2.x 和 Python 3.x 中的代码时很有用。要创建具有特定 Python 版本的环境,请键入类似于 conda create -n py3 python=3conda create -n py2 python=2 的命令。实际上,我在我的个人计算机上创建了这两个环境。我将它们用作与任何特定项目均无关的通用环境,以处理普通的工作(可轻松使用每个 Python 版本)。这些命令将分别安装 Python 3 和 Python 2 的最新版本。要安装特定版本(例如 Python 3.3),请使用 conda create -n py python=3.3

进入环境

创建了环境后,在 OSX/Linux 上使用 source activate my_env 进入环境。在 Windows 上,请使用 activate my_env

进入环境后,你会在终端提示符中看到环境名称,它类似于 (my_env) ~ $。环境中只安装了几个默认的包,以及你在创建它时安装的包。你可以使用 conda list 检查这一点。在环境中安装包的命令与前面一样:conda install package_name。不过,这次你安装的特定包仅在你进入环境后才可用。要离开环境,请键入 source deactivate(在 OSX/Linux 上)。在 Windows 上,请使用 deactivate

保存和加载环境

共享环境这项功能确实很有用,它能让其他人安装你的代码中使用的所有包,并确保这些包的版本正确。你可以使用 conda env export > environment.yaml 将包保存为 YAML。命令的第一部分 conda env export 用于输出环境中的所有包的名称(包括 Python 版本)。

上图中,你可以看到环境的名称和所有依赖项及其版本。导出命令的第二部分 > environment.yaml 将导出的文本写入到 YAML 文件 environment.yaml 中。现在可以共享此文件,而且其他人能够用于创建和你项目相同的环境。

要通过环境文件创建环境,请使用 conda env create -f environment.yaml。这会创建一个新环境,而且它具有同样的在 environment.yaml 中列出的库。

列出环境

如果忘记了环境的名称(我有时会这样),可以使用 conda env list 列出你创建的所有环境。你会看到环境的列表,而且你当前所在环境的旁边会有一个星号。默认的环境(即当你不在选定环境中时使用的环境)名为 root

删除环境

如果你不再使用某些环境,可以使用 conda env remove -n env_name 删除指定的环境(在这里名为 env_name)。

最佳做法

使用环境

对我有很大帮助的一点是,我的 Python 2 和 Python 3 具有独立的环境。我使用了 conda create -n py2 python=2conda create -n py3 python=3 创建两个独立的环境,即 py2py3。现在,我的每个 Python 版本都有一个通用环境。在所有这些环境中,我都安装了大多数常用的标准数据科学包(numpy、scipy、pandas 等)。

我还发现,为我从事的每个项目创建环境很有用。这对于与数据不相关的项目(例如使用 Flask 开发的 Web 应用)也很有用。例如,我为我的个人博客(使用 Pelican)创建了一个环境。

共享环境

在 GitHub 上共享代码时,最好同样创建环境文件并将其包括在代码库中。这能让其他人更轻松地安装你的代码的所有依赖项。对于不使用 conda 的用户,我通常还会使用 pip freeze在此处了解详情)将一个 pip requirements.txt 文件导出并包括在其中。

了解更多信息

要详细了解 conda 以及它如何融入到 Python 生态系统中,请查看这篇由 Jake Vanderplas 撰写的文章:Conda myths and misconceptions(有关 conda 的迷思和误解)。此外,如果你有多余精力,也可以参考这篇 conda 文档

相关文章

网友评论

      本文标题:Anaconda--笔记

      本文链接:https://www.haomeiwen.com/subject/klazfqtx.html