美文网首页
分布式事务

分布式事务

作者: 甜甜起司猫_ | 来源:发表于2021-08-11 09:14 被阅读0次

分布式事务

  1. 强一致性事务 XA
  2. 柔性事务 BASE
    2.1 不使用事务,业务侧补偿 SAGA模式
    2.2 使用柔性事务框架 TCC/AT

XA协议

XA 协议是由 X/Open 组织提出的分布式事务处理规范,主要定义了事务管理器 TM 和局部资源管理器 RM 之间的接口。

两阶段提交

分布式事务的两阶段提交是把整个事务提交分为 prepare 和 commit 两个阶段。

第一阶段,事务协调者向事务参与者发送 prepare 请求,事务参与者收到请求后,如果可以提交事务,回复 yes,否则回复 no。

第二阶段,如果所有事务参与者都回复了 yes,事务协调者向所有事务参与者发送 commit 请求,否则发送 rollback 请求。

两阶段提交存在三个问题:

  1. 同步阻塞,本地事务在 prepare 阶段锁定资源,如果有其他事务也要修改 xiaoming 这个账户,就必须等待前面的事务完成。这样就造成了系统性能下降。
  2. 协调节点单点故障,如果第一个阶段 prepare 成功了,但是第二个阶段协调节点发出 commit 指令之前宕机了,所有服务的数据资源处于锁定状态,事务将无限期地等待。
  3. 数据不一致,如果第一阶段 prepare 成功了,但是第二阶段协调节点向某个节点发送 commit 命令时失败,就会导致数据不一致。

三阶段提交

为了解决两阶段提交的问题,三阶段提交做了改进:

  1. 在协调节点和事务参与者都引入了超时机制。
  2. 第一阶段的 prepare 阶段分成了两步,canCommi 和 preCommit。

引入 preCommit 阶段后,协调节点会在 commit 之前再次检查各个事务参与者的状态,保证它们的状态是一致的。但是也存在问题,那就是如果第三阶段发出 rollback 请求,有的节点没有收到,那没有收到的节点会在超时之后进行提交,造成数据不一致。

XA事务语法介绍

三阶段:

  • 第一阶段:
    开启 xa 事务,这里 xid 为全局事务 id:
    XA {START|BEGIN} xid [JOIN|RESUME]
    结束 xa 事务:
    XA END xid [SUSPEND [FOR MIGRATE]]

  • 第二阶段,即 prepare:
    XA PREPARE xid

  • 第三阶段,即 commit/rollback:
    XA COMMIT xid [ONE PHASE]
    XA ROLLBACK xid
    查看处于 PREPARE 阶段的所有事务:
    XA RECOVER XA RECOVER [CONVERT XID]

AT模式

AT 模式是一种无侵入的分布式事务解决方案。

在 AT 模式下,用户只需关注自己的“业务 SQL”,用户的 “业务 SQL” 作为一阶段,Seata 框架会自动生成事务的二阶段提交和回滚操作。

无侵入分布式事务管理

AT 模式如何做到对业务的无侵入

  • 一阶段:
    在一阶段,Seata 会拦截“业务 SQL”,首先解析 SQL 语义,找到“业务 SQL”要更新的业务数据,在业务数据被更新前,将其保存成“before image”,然后执行“业务 SQL”更新业务数据,在业务数据更新之后,再将其保存成“after image”,最后生成行锁。以上操作全部在一个数据库事务内完成,这样保证了一阶段操作的原子性。

  • 二阶段提交:
    二阶段如果是提交的话,因为“业务 SQL”在一阶段已经提交至数据库, 所以 Seata 框架只需将一阶段保存的快照数据和行锁删掉,完成数据清理即可。

  • 二阶段回滚:
    二阶段如果是回滚的话,Seata 就需要回滚一阶段已经执行的“业务 SQL”,还原业务数据。回滚方式便是用“before image”还原业务数据;但在还原前要首先要校验脏写,对比“数据库当前业务数据”和 “after image”,如果两份数据完全一致就说明没有脏写,可以还原业务数据,如果不一致就说明有脏写,出现脏写就需要转人工处理。

  • 总结
    AT 模式的一阶段、二阶段提交和回滚均由 Seata 框架自动生成,用户只需编写“业务 SQL”,便能轻松接入分布式事务,AT 模式是一种对业务无任何侵入的分布式事务解决方案。但AT模式存在的不足就是 当操作的数据 是共享型数据,会存在脏写的问题,所以如果是 用户独有数据可以使用AT模式。

TCC 模式

TCC 模式需要用户根据自己的业务场景实现 Try、Confirm 和 Cancel 三个操作;事务发起方在一阶段执行 Try 方式,在二阶段提交执行 Confirm 方法,二阶段回滚执行 Cancel 方法。

TCC 三个方法描述:

  • Try:资源的检测和预留;
  • Confirm:执行的业务操作提交;要求 Try 成功 Confirm 一定要能成功;
  • Cancel:预留资源释放;

TCC 的实践经验

蚂蚁金服TCC实践,总结以下注意事项:

  • 业务模型分2阶段设计
  • 并发控制
  • 允许空回滚
  • 防悬挂控制
  • 幂等控制

TCC 设计 - 业务模型分 2 阶段设计

用户接入 TCC ,最重要的是考虑如何将自己的业务模型拆成两阶段来实现。

用户接入 TCC 模式,最重要的事情就是考虑如何将业务模型拆成 2 阶段,实现成 TCC 的 3 个方法,并且保证 Try 成功 Confirm 一定能成功。相对于 AT 模式,TCC 模式对业务代码有一定的侵入性,但是 TCC 模式无 AT 模式的全局行锁,TCC 性能会比 AT 模式高很多。

TCC 设计 - 允许空回滚

空回滚:

  • Try未执行,Cancel执行了

出现原因:

  • Try超时(丢包)
  • 分布式事务回滚,触发Cancel
  • 未收到Try,收到Cancel

解决:

允许空回滚

Cancel 接口设计时需要允许空回滚。在 Try 接口因为丢包时没有收到,事务管理器会触发回滚,这时会触发 Cancel 接口,这时 Cancel 执行时发现没有对应的事务 xid 或主键时,需要返回回滚成功。让事务服务管理器认为已回滚,否则会不断重试,而 Cancel 又没有对应的业务数据可以进行回滚。

TCC 设计 - 防悬挂控制

悬挂:

  • Cancel比Try先执行

出现原因:

  • Try超时(拥堵)
  • 分布式事务回滚,触发Cancel
  • 拥堵的Try到达

解决:

要允许空回滚,但要拒绝空回滚后的Try操作

悬挂的意思是:Cancel 比 Try 接口先执行,出现的原因是 Try 由于网络拥堵而超时,事务管理器生成回滚,触发 Cancel 接口,而最终又收到了 Try 接口调用,但是 Cancel 比 Try 先到。按照前面允许空回滚的逻辑,回滚会返回成功,事务管理器认为事务已回滚成功,则此时的 Try 接口不应该执行,否则会产生数据不一致,所以我们在 Cancel 空回滚返回成功之前先记录该条事务 xid 或业务主键,标识这条记录已经回滚过,Try 接口先检查这条事务xid或业务主键如果已经标记为回滚成功过,则不执行 Try 的业务操作。

TCC 设计 - 幂等控制

幂等性的意思是:对同一个系统,使用同样的条件,一次请求和重复的多次请求对系统资源的影响是一致的。因为网络抖动或拥堵可能会超时,事务管理器会对资源进行重试操作,所以很可能一个业务操作会被重复调用,为了不因为重复调用而多次占用资源,需要对服务设计时进行幂等控制,通常我们可以用事务 xid 或业务主键判重来控制。

saga模式

Saga 是一种补偿协议,在 Saga 模式下,分布式事务内有多个参与者,每一个参与者都是一个冲正补偿服务,需要用户根据业务场景实现其正向操作和逆向回滚操作。

分布式事务执行过程中,依次执行各参与者的正向操作,如果所有正向操作均执行成功,那么分布式事务提交。如果任何一个正向操作执行失败,那么分布式事务会退回去执行前面各参与者的逆向回滚操作,回滚已提交的参与者,使分布式事务回到初始状态。

Saga 正向服务与补偿服务也需要业务开发者实现。因此是业务入侵的。

Saga 模式下分布式事务通常是由事件驱动的,各个参与者之间是异步执行的,Saga 模式是一种长事务解决方案。

Saga 模式使用场景

Saga 模式适用于业务流程长且需要保证事务最终一致性的业务系统,Saga 模式一阶段就会提交本地事务,无锁、长流程情况下可以保证性能。

事务参与者可能是其它公司的服务或者是遗留系统的服务,无法进行改造和提供 TCC 要求的接口,可以使用 Saga 模式。

Saga模式的优势与缺点

优势:

  • 一阶段提交本地数据库事务,无锁,高性能;
  • 参与者可以采用事务驱动异步执行,高吞吐
  • 补偿服务即正向服务的“反向”,易于理解,易于实现

劣势:

  • Saga 模式由于一阶段已经提交本地数据库事务,且没有进行“预留”动作,所以不能保证隔离性。后续会讲到对于缺乏隔离性的应对措施。

注意:

与TCC实践经验相同的是,Saga 模式中,每个事务参与者的冲正、逆向操作,需要支持:

  • 空补偿:逆向操作早于正向操作时;
  • 防悬挂控制:空补偿后要拒绝正向操作
  • 幂等

总结 AT、TCC、Saga、XA 模式分析

  • AT 模式是无侵入的分布式事务解决方案,适用于不希望对业务进行改造的场景,几乎0学习成本。
  • TCC 模式是高性能分布式事务解决方案,适用于核心系统等对性能有很高要求的场景。
  • Saga 模式是长事务解决方案,适用于业务流程长且需要保证事务最终一致性的业务系统,Saga 模式一阶段就会提交本地事务,无锁,长流程情况下可以保证性能,多用于渠道层、集成层业务系统。事务参与者可能是其它公司的服务或者是遗留系统的服务,无法进行改造和提供 TCC 要求的接口,也可以使用 Saga 模式。
  • XA模式是分布式强一致性的解决方案,但性能低而使用较少。

相关文章

  • 分布式事务与分布式锁

    一、分布式事务 什么事分布式事务 分布式事务就是指事务的资源分别位于不同的分布式系统的不同节点之上的事务。 分布式...

  • 微服务分布式事务--破局

    微服务架构下分布式事务设计实战 商品 订单 支付 分布式事务->长事务本地事务->短事务 分布式事务: 比如 下...

  • 分布式事务

    目录 分布式事务解决方案 长事务: saga 短事务: 设计的时候尽量短事务,能不用分布式事务尽量不用,分布式事务...

  • ATOMIKOS+JTA分布式事务记录

    ATOMIKOS+JTA是用来分布式事务的中间件,那么什么是分布式事务呢? 事务,分为单机事务,分布式事务;单机事...

  • 分布式事务

    一、什么是分布式事务 二、分布式事务产生的原因/分布式事务的应用场景 三、分布式事务的基础/理论 CAP/BASE...

  • 微服务 14:初探微服务分布式事务 - Seata

    1:什么是事务,什么是ACID 2:什么是分布式事务 3:分布式事务解决方案 4:Seata 分布式事务框架 5:...

  • 分布式事务的解决方案

    本文从以下几个方面介绍分布式事务的解决方案: 为什么会有分布式事务分布式事务经典模型分布式事务解决方案 为什么会有...

  • MySQL分布式事务支持

    MySQL分布式事务介绍 InnoDB存储引擎提供了对XA事务的支持,并通过XA事务来支持分布式事务的实现。分布式...

  • 微服务中分布式事务解决方案

    分布式事务解决方案 1、阿里巴巴seata分布式事务 2、 京东ShardingSphere分布式事务 3、tcc...

  • 解密分布式事务框架-Fescar

    1.分布式事务 我曾经能不用分布式事务就别用分布式事务,因为会引入很多的复杂度。虽然再网上有很多开源的分布式事务框...

网友评论

      本文标题:分布式事务

      本文链接:https://www.haomeiwen.com/subject/klhfbltx.html