美文网首页数据结构
图遍历算法之最小生成树Prim算法与 Kruskal算法

图遍历算法之最小生成树Prim算法与 Kruskal算法

作者: lilyblspku | 来源:发表于2019-05-20 18:25 被阅读0次

    一、导言

    生成树(spanning tree):在图论中,无向图G=(V,E)的生成树(spanning tree)是具有G的全部顶点,但边数最少的联通子图。假设G中一共有n个顶点,一颗生成树满足下列条件:
    (1)n个顶点;
    (2)n-1条边;
    (3)n个顶点联通;
    (4)一个图的生成树可能有多个。
    最小生成树(minimum spanning tree, MST)/最小生成森林:联通加权无向图中边缘权重加和最小的生成树。给定无向图G=(V,E),(u,v)代表顶点u与顶点v的边,w(u,v)代表此边的权重,若存在生成树T使得:
    w(T)=\sum_{(u,v)\in T}w(u,v)
    最小,则T为G的最小生成树。对于非连通无向图来说,它的每一连通分量同样有最小生成树,它们的并被称为最小生成森林。最小生成树除了继承生成树的性质之外,还存在下面两个特点:

    • 当图的每一条边的权值都相同时,该图的所有生成树都是最小生成树;
    • 如果图的每一条边的权值都互不相同,那么最小生成树将只有一个。

    最小生成树示例:


    图1. 加权无向联通图及其最小生成树

    最小生成树MST的实际应用

    • 构建成本最小的连接网络:电网,计算机网络、交通网络、供应链网络;
    • 最小生成树聚类:考虑数据集D,计算两点之间的距离当作边缘权重(一般采用欧式距离)。最小生成树聚类思想为,首先通过Prim等算法对数据集生成最小生成树,然后根据给定的阈值对最小生成树的边权重进行扫描,当边缘权重大于设定的阈值时,将对应的边切断。对所有数据执行上述操作后,剩下的还相互连接的部分即为相同的类或簇。
      图2. 基于MST的聚类示例
    • 反洗钱:核心交易网络发现+核心交易路线分

    二、Prim算法介绍

    Prim's Algorithm也翻译做普里姆算法,是1930年捷克数学家算法沃伊捷赫·亚尔尼克发现;并在1957年由美国计算机科学家罗伯特·普里姆独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法亚尔尼克算法普里姆-亚尔尼克算法
    Prim算法的思想:从任意一个顶点开始,每次选择与当前顶点最近的一个顶点,并将两点之间的边加入到树中。算法描述如下:

    1. 输入:加权无向图G, 顶点集合为V,边集合为E;
    2. 初始化: V_{new}={s},s为集合V中选择的任意起始点,E_{new}=\{\}
    3. 重复下列操作,直到V_{new}=V:
      3.1 在集合E中选取权值最小的边(u, v),其中u为集合V_{new}中的元素,而v则是V中没有加入V_{new}的顶点(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
      3.2 将v加入集合V_{new}中,将(u, v)加入集合E_{new}中;
    4. 输出:使用集合V_{new}E_{new}来描述所得到的最小生成树。

    下面对算法的图例描述:
    输入

    原始加权无向连通图
    说明: 此为原始加权无向连通图,每条边的数字代表其权重;
    第1步:顶点A、B、E和F通过单条边与D相连。A是距离D最近的顶点,因此将A及对应边AD以高亮表示



    第2步:下一个顶点为距离D或A最近的顶点。B距D为9,距A为7,E为15,F为6。因此,F距D或A最近,因此将顶点F与相应边DF以高亮表示。



    第3步:算法继续重复上面的步骤。距离A为7的顶点B被高亮表示。



    第4步:在当前情况下,可以在C、E与G间进行选择。C距B为8,E距B为7,G距F为11。E最近,因此将顶点E与相应边BE高亮表示。



    第5步:这里,可供选择的顶点只有C和G。C距E为5,G距E为9,故选取C,并与边EC一同高亮表示。



    第6步:顶点G是唯一剩下的顶点,它距F为11,距E为9,E最近,故高亮表示G及相应边EG。



    输出:所有顶点均已被选取,图中绿色部分即为连通图的最小生成树。在此例中,最小生成树的权值之和为39。

    三、Kruskal算法介绍

    Kruskal是另一个计算最小生成树的算法,由Joseph Kruskal在1956年发表,属于贪婪算法。
    算法原理:将每个顶点放入其自身的数据集中,然后按照权重的升序来选择边。当选择每条边时,判断定义边的顶点是否在不同的数据集中。如果是,将此边插入最小生成树的集合中,将集合中包含每个顶点的联合体取出。算法描述如下:

    1. 新建图G,G中拥有原图中相同的节点,但不包含边;
    2. 将原图中所有的边按权值从小到大排讯;
    3. 从权值最小的边开始,如果这条边连接的两个节点在G中不在同一个分量,则添加这条边到图G中;
    4. 重复3,直到图G中所有的节点在同一个联通分量中


      Kruskal算法的动态图示

    Kruskal算法的演示如下:
    假设有一张图G,包含若干点和边。


    第1步:将所有的边的长度排序,用排序的结果作为选择边的依据。资源排序,对局部最优的资源进行选择,排序完成后,率先选择了边AD。



    第2步:在剩下的边中寻找,找到了CE。这里边的权重也是5



    第3步:依次类推找到了DF,AB,BE。



    第4步:下面继续选择, BC或者EF尽管现在长度为8的边是最小的未选择的边。但是现在他们已经连通了(对于BC可以通过CE,EB来连接,类似的EF可以通过EB,BA,AD,DF来接连)。所以不需要选择他们。类似的BD也已经连通了(这里上图的连通线用红色表示了)。最后就剩下EG和FG了。当然我们选择了EG。(等判断是否联通

    四、Prim和Kruskal算法的R及python实现

    1. R 实现 Prim机Kruskal算法:igraph包mst函数, RBGL包的mstree.prim/mstree.kruskal

    RBGL代码示例:

    if (!requireNamespace("BiocManager", quietly = TRUE))
      install.packages("BiocManager")
    BiocManager::install("Rgraphviz")
    BiocManager::install("RGBL")
    require(RGBL)
    require(XML)
    require(Rgraphviz)
    require(ape) # DNA sequences
    
    # 1. simple DNA example
    cat(">No305",
       "NTTCGAAAAACACACCCACTACTAAAANTTATCAGTCACT",
       ">No304",
       "ATTCGAAAAACACACCCACTACTAAAAATTATCAACCACT",
       ">No306",
       "ATTCGAAAAACACACCCACTACTAAAAATTATCAATCACT",
       ">No307",
       "ATTCGAATAACACAGCCACTTCTAAAAATTATCAATCACT",
       file = "exdna.fas", sep = "\n")
    data <- read.dna("exdna.fas", format = "fasta")
    
    #generate a distance matrix
    dist <- dist.dna(data,model="raw", as.matrix=TRUE)
    #creates an undirected graph
    dist.g<-as(dist,Class="graphNEL") 
    #generates the minimum spanning tree using  the prim algorithm
    ms<-mstree.prim(dist.g)
    fromto<-cbind(ms$edgeList[1,],ms$edgeList[2,],ms$weight[1,])
    adjMST<-ftM2adjM(as.matrix(fromto[,1:2]),W=fromto[,3],edgemode="undirected")
    am.graph<-new("graphAM", adjMat=adjMST )
    plot(am.graph, attrs = list(node = list(fillcolor = "lightblue"),edge = list(arrowsize=0.5)),"neato")
    
    #2. more complicated DNA example
    a <- "ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/sequence_read/"
    b <- "SRR062641.filt.fastq.gz"
    URL <- paste0(a, b)
    download.file(URL, b)
    X <- read.fastq(b)
    names(X)<-paste0("DNA_1",1:length(X))
    dist <- dist.dna(X[1:30],model="raw", as.matrix=TRUE)
    #creates an undirected graph
    dist.g<-as(dist,Class="graphNEL") 
    #generates the minimum spanning tree using kruskal algorithm 
    ms<-mstree.kruskal(dist.g)
    fromto<-cbind(ms$edgeList[1,],ms$edgeList[2,],ms$weight[1,])
    adjMST<-ftM2adjM(as.matrix(fromto[,1:2]),W=fromto[,3],edgemode="undirected")
    am.graph<-new("graphAM", adjMat=adjMST )
    plot(am.graph, attrs = list(node = list(fillcolor = "lightblue"),edge = list(arrowsize=0.5)),"neato")
    

    结果示例:

    > ms
    $edgeList
         [,1]    [,2]    [,3]    [,4]   
    from "No305" "No306" "No305" "No306"
    to   "No305" "No304" "No306" "No307"
    
    $weights
           [,1]       [,2]       [,3]       [,4]
    weight    0 0.02631579 0.02631579 0.07894737
    
    $nodes
    [1] "No305" "No304" "No306" "No307"
    
    结果1.png
    > ms
    $edgeList
         [,1]      [,2]      [,3]      [,4]     [,5]      [,6]      [,7]     
    from "DNA_114" "DNA_118" "DNA_119" "DNA_18" "DNA_11"  "DNA_15"  "DNA_110"
    to   "DNA_128" "DNA_124" "DNA_118" "DNA_14" "DNA_129" "DNA_117" "DNA_127"
         [,8]      [,9]      [,10]     [,11]     [,12]     [,13]     [,14]    
    from "DNA_120" "DNA_121" "DNA_122" "DNA_114" "DNA_119" "DNA_19"  "DNA_120"
    to   "DNA_122" "DNA_14"  "DNA_124" "DNA_11"  "DNA_121" "DNA_126" "DNA_128"
         [,15]     [,16]     [,17]     [,18]    [,19]     [,20]     [,21]    
    from "DNA_17"  "DNA_111" "DNA_116" "DNA_12" "DNA_15"  "DNA_110" "DNA_110"
    to   "DNA_129" "DNA_129" "DNA_118" "DNA_17" "DNA_115" "DNA_11"  "DNA_16" 
         [,22]     [,23]     [,24]     [,25]     [,26]     [,27]     [,28]    
    from "DNA_110" "DNA_111" "DNA_112" "DNA_125" "DNA_125" "DNA_121" "DNA_113"
    to   "DNA_126" "DNA_112" "DNA_15"  "DNA_130" "DNA_127" "DNA_123" "DNA_19" 
         [,29]   
    from "DNA_11"
    to   "DNA_13"
    
    $weights
                [,1]    [,2]    [,3]  [,4]      [,5]      [,6]      [,7]      [,8]
    weight 0.5833333 0.59375 0.59375 0.625 0.6354167 0.6458333 0.6458333 0.6458333
                [,9]     [,10]     [,11]   [,12]   [,13]   [,14]   [,15]     [,16]
    weight 0.6458333 0.6458333 0.6458333 0.65625 0.65625 0.65625 0.65625 0.6666667
               [,17]     [,18]     [,19]     [,20]     [,21]     [,22]     [,23]
    weight 0.6666667 0.6770833 0.6770833 0.6770833 0.6770833 0.6770833 0.6770833
               [,24]     [,25]     [,26]  [,27]  [,28]     [,29]
    weight 0.6770833 0.6770833 0.6770833 0.6875 0.6875 0.6979167
    
    $nodes
     [1] "DNA_11"  "DNA_12"  "DNA_13"  "DNA_14"  "DNA_15"  "DNA_16"  "DNA_17" 
     [8] "DNA_18"  "DNA_19"  "DNA_110" "DNA_111" "DNA_112" "DNA_113" "DNA_114"
    [15] "DNA_115" "DNA_116" "DNA_117" "DNA_118" "DNA_119" "DNA_120" "DNA_121"
    [22] "DNA_122" "DNA_123" "DNA_124" "DNA_125" "DNA_126" "DNA_127" "DNA_128"
    [29] "DNA_129" "DNA_130"
    
    结果2.png

    2. Python实现Prim和Kruskal算法

    Prim算法示例:

    import random
    import time
    def random_matrix_genetor(vex_num=10):
        '''
        随机图顶点矩阵生成器
        输入:顶点个数,即矩阵维数
        '''
        data_matrix=[]
        for i in range(vex_num):
            one_list=[]
            for j in range(vex_num):
                one_list.append(random.randint(1, 100))
            data_matrix.append(one_list)
        return data_matrix
    
    def prim(data_matrix):
        '''
        prim 算法
        '''
        vex_num=len(data_matrix)
        prims=[]
        weights=[]
        flag_list=[False]*vex_num
        node=0
        for i in range(vex_num):
            prims.append(0)
            weights.append(0)
        flag_list[node]=True
        for i in range(vex_num):
            weights[i]=data_matrix[node][i]
        
        for i in range(vex_num-1):
            min_value=float('inf')
            for j in range(vex_num):
                if weights[j]!=float('inf') and weights[j]<min_value and not flag_list[j]:
                    min_value=weights[j]
                    node=j
            if node==0:
                return
            flag_list[node]=True
            for m in range(vex_num):
                if weights[m]>data_matrix[node][m] and not flag_list[m]:
                    weights[m]=data_matrix[node][m]
                    prims[m]=node 
        return weights, prims
     
    def main_test_func(vex_num=10):
        '''
        主测试函数
        '''
        start_time=time.time()
        data_matrix=random_matrix_genetor(vex_num)
        weights, prims=prim(data_matrix)
        print(weights)
        print(prims)
        end_time=time.time()
        return end_time-start_time
     
    if __name__=='__main__':   
        data_matrix=random_matrix_genetor(10)
        weights, prims=prim(data_matrix)
        print(weights)
        print(prims)
        time_list=[]
        print('----------------------------10顶点测试-------------------------------------')
        time10=main_test_func(10)
        time_list.append(time10)
     
        print('----------------------------50顶点测试-------------------------------------')
        time50=main_test_func(50)
        time_list.append(time50)
     
        print('----------------------------100顶点测试-------------------------------------')
        time100=main_test_func(100)
        time_list.append(time100)
     
        print('---------------------------------时间消耗对比--------------------------------')
        for one_time in time_list:
            print(one_time)
    

    输出:

    [26, 11, 12, 36, 13, 1, 4, 4, 6, 4]
    [0, 7, 3, 0, 5, 7, 5, 2, 1, 7]
    ----------------------------10顶点测试-------------------------------------
    [71, 4, 39, 8, 20, 17, 4, 13, 10, 1]
    [0, 3, 5, 4, 0, 6, 4, 4, 0, 8]
    ----------------------------50顶点测试-------------------------------------
    [60, 4, 4, 3, 4, 3, 9, 7, 1, 1, 3, 4, 2, 6, 5, 4, 5, 1, 2, 4, 3, 3, 2, 5, 4, 4, 4, 1, 4, 3, 5, 6, 2, 3, 5, 5, 3, 4, 2, 3, 4, 6, 3, 2, 2, 3, 4, 3, 3, 3]
    [0, 27, 21, 37, 29, 1, 17, 16, 27, 27, 9, 21, 37, 23, 13, 37, 49, 34, 33, 26, 2, 42, 27, 40, 47, 16, 33, 15, 35, 26, 11, 40, 24, 24, 12, 13, 49, 11, 29, 19, 48, 7, 4, 7, 49, 5, 15, 0, 10, 45]
    ----------------------------100顶点测试-------------------------------------
    [68, 1, 2, 2, 1, 3, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 3, 3, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 2, 2, 2, 3, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 2, 2, 4, 2, 2, 1, 1, 1, 1, 3, 1, 2, 1, 3, 2, 2, 2, 1, 1, 1, 8, 5, 1, 2, 1, 2, 3, 3, 1, 2, 3, 6, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2]
    [0, 4, 7, 1, 42, 99, 97, 11, 68, 21, 28, 27, 50, 26, 49, 6, 7, 22, 44, 80, 95, 3, 34, 30, 41, 49, 35, 52, 31, 12, 0, 63, 22, 90, 59, 15, 86, 74, 36, 82, 27, 32, 91, 45, 2, 82, 91, 55, 66, 34, 59, 86, 63, 52, 82, 56, 0, 82, 98, 0, 7, 38, 59, 26, 39, 31, 37, 56, 65, 87, 57, 2, 62, 56, 94, 28, 46, 38, 37, 29, 68, 14, 38, 54, 54, 84, 14, 6, 42, 27, 57, 12, 51, 4, 29, 12, 95, 30, 47, 35]
    ---------------------------------时间消耗对比--------------------------------
    0.0002651214599609375
    0.004545927047729492
    0.020392179489135742
    

    Kruskal算法示例:

    node = dict()
    rank = dict()
    
    def make_set(point):
        node[point] = point
        rank[point] = 0
        
    def find(point):
        if node[point] != point:
            node[point] = find(node[point])
        return node[point]
    
    def merge(point1, point2):
        root1 = find(point1)
        root2 = find(point2)
        if root1 != root2:
            if rank[root1] > rank[root2]:
                node[root2] = root1
            else:
                node[root1] = root2
                if rank[root1] == rank[root2] : rank[root2] += 1
                                    
    def Kruskal(graph):
        for vertice in graph['vertices']:
            make_set(vertice)
        
        mst = set()
        
        edges = list(graph['edges'])
        edges.sort()
        for edge in edges:
            weight, v1, v2 = edge
            if find(v1) != find(v2):
                merge(v1 , v2)
                mst.add(edge)
        return mst
    
    graph = {
        'vertices': ['A', 'B', 'C', 'D','E'],
        'edges': set([
            (1, 'A', 'B'),
            (5, 'A', 'C'),
            (3, 'A', 'D'),
            (4, 'B', 'C'),
            (2, 'B', 'D'),
            (1, 'C', 'D'),
            (8, 'B', 'E'),
            (3, 'A', 'E'),
            ])
        }
    print(Kruskal(graph))
    

    输出:

    {(1, 'C', 'D'), (1, 'A', 'B'), (3, 'A', 'E'), (2, 'B', 'D')}
    

    参考资料

    [1] Spanning tree, wiki: https://zh.wikipedia.org/wiki/%E6%9C%80%E5%B0%8F%E7%94%9F%E6%88%90%E6%A0%91;
    [2]Minimum spanning tree, wiki: https://zh.wikipedia.org/wiki/%E7%94%9F%E6%88%90%E6%A0%91;
    [3] 最小生成树聚类: http://dataminer.me/2017/10/20/%E6%9C%80%E5%B0%8F%E7%94%9F%E6%88%90%E6%A0%91%E8%81%9A%E7%B1%BB/;
    [4] 最小生成树-Prim算法和Kruskal算法: https://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html;
    [5] prim's algorithm, wiki: https://zh.wikipedia.org/wiki/%E6%99%AE%E6%9E%97%E5%A7%86%E7%AE%97%E6%B3%95
    [6]图的基本算法(最小生成树): https://www.jianshu.com/p/efcd21494dff;
    [7]算法导论--最小生成树(Kruskal和Prim算法):https://blog.csdn.net/luoshixian099/article/details/51908175;
    [8]Kruskal算法,wiki:https://zh.wikipedia.org/wiki/%E5%85%8B%E9%B2%81%E6%96%AF%E5%85%8B%E5%B0%94%E6%BC%94%E7%AE%97%E6%B3%95;
    [9] RGBL installation: http://www.bioconductor.org/packages/release/bioc/html/RBGL.html
    [10]mstree.kruskal: https://www.rdocumentation.org/packages/RBGL/versions/1.48.1/topics/mstree.kruskal;
    [11]Draw Minimum Spanning Tree (Mst) With Pie Charts In R: https://www.biostars.org/p/18876/;
    [12]graphviz installation:https://www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html;
    [13]ape, read.dna 函数:https://www.rdocumentation.org/packages/ape/versions/5.3/topics/read.dna;
    [14]Minimum spanning tree in igraph: https://igraph.org/r/doc/mst.html;
    [15]python实现Prim算法求解加权连通图的最小生成树问题:https://blog.csdn.net/Together_CZ/article/details/74783631;
    [16] Github: https://github.com/qiwsir/algorithm/blob/master/kruskal_algorithm.md;
    [17]知乎:https://zhuanlan.zhihu.com/p/61628249

    相关文章

      网友评论

        本文标题:图遍历算法之最小生成树Prim算法与 Kruskal算法

        本文链接:https://www.haomeiwen.com/subject/kmoiaqtx.html