A/B test

作者: 初晴_c1bf | 来源:发表于2020-03-30 10:39 被阅读0次

    简单来说,A/B测试在产品优化中的应用方法是:在产品正式迭代发版之前,为同一个目标制定两个(或以上)方案,将用户流量对应分成几组,在保证每组用户特征相同的前提下,让用户分别看到不同的方案设计,根据几组用户的真实数据反馈,科学的帮助产品进行决策。

    先验性: A/B测试其实是一种“先验”的试验体系,属于预测型结论,与“后验”的归纳性结论差别巨大。同样是用数据统计与分析版本的好坏,以往的方式是先将版本发布,再通过数据验证效果,而A/B 测试却是通过科学的试验设计、采样样本代表性、流量分割与小流量测试等方式来获得具有代表性的试验结论,这样就可以用很少的样本量就能推广到全部流量可信。

    并行性: A/B测试是将两个或以上的方案同时在线试验,这样做的好处在于保证了每个版本所处环境的一致性,便于更加科学客观地对比优劣。同时,也节省了验证的时间,无需在验证完一个版本之后再测试另一个。

    科学性: 这里强调的是流量分配的科学性。A/B 测试的正确做法,是将相似特征的用户均匀的分配到试验组中,确保每个组别的用户特征的相似性,从而避免出现数据偏差,使得试验的结果更有代表性。

    ABtest可以用在哪里?

    产品UI

    不同行业的产品需要不同的风格,同时还要与企业的品牌相得益彰。利用A/B 测试优化UI能给用户带来更好的交互体验和视觉感受。

    文案内容

    顾名思义是指用户阅读到的文字内容,它贯穿一个产品的所有部分,小到图片配文和按钮文字,大到文章标题甚至版块主题。这些部分都可以尝试变换文案内容,测试不同方案的数据效果。

    页面布局

    有些时候,可能根本不需要对产品的UI或是文案内容作出调整,只是在布局排版上的改变,就可以出现增长的效果。

    产品功能

    想给产品增加一个新功能,可是很难确定是否能达到用户的预期,如果盲目上线,可能会造成一些损失。使用A/B 测试,对你的用户真正负责。 例如,社交类产品在付费查看照片的新功能正式上线前,需要进行A/B 测试,以验证功能的使用情况和效果。

    推荐算法

    包括基于内容的推荐算法(根据用户的历史记录推荐相似内容)、基于协同过滤的推荐算法(根据有相似兴趣用户的行为推荐相关内容)、基于关联规则的推荐算法(根据内容本身的相关性给用户推荐),最终提高用户使用黏性。

    应用场景

    广告着陆页

    着陆页作为互联网营销中流量的承接和转化的关键步骤,如何让访客在看到广告(或营销页面)后点击进入着陆页,并继续保持对您的产品或服务的兴趣,乃至产生好感,最终完成注册、购买、分享等转化行为是十分重要的。A/B测试能够帮助你最大化你的营销ROI。

    Web/H5 页面

    除广告营销的传播外,产品的官网页面(不论是PC端还是移动端)始终是用户了解产品的重要渠道。因此,如何让用户更好的了解产品信息,激发用户产生进一步行为意愿,从而得到更高的注册率、购买率、下载率等,是Web端页面优化的首要目标。利用A/B测试,可以在较少的成本支出下,找到页面的最佳展现方法。

    APP用户体验

    随着C端用户的海量进入,产品的复杂度越来越高,新版本的决策风险也急剧提升,保持产品核心业务数据稳步增长是每个App的版本目标,通过A/B测试在每个版本正式发布之前验证版本的数据表现,让每次迭代都能得到确定性增长。

    媒体广告投放与管理

    对于媒体和广告技术公司而言,可以通过A/B测试实现由设计与数据驱动的创新性广告产品的优化。一方面借助测试可以优化广告投放效果和广告资源填充率,以达到提升广告单价的目标;另一方面还能衡量现有广告产品对用户体验的影响,通过不断提高用户体验的广告产品,从而驱动更高的移动广告业务收入。

    灰度发布

    目前产品优化迭代的方式,通常是直接将某版本上线发布给全部用户,一旦遇到线上事故(或BUG),对用户的影响极大,解决问题周期较长,甚至有时不得不回滚到前一版本,严重影响了用户体验。A/B测试通过给小批量用户发放版本,有效减少全用户发生线上事故/重大BUG的概率,绝大多数用户对BUG无感知,最大程度保证了用户的良好体验。

    链接:http://help.appadhoc.com/zh/

    相关文章

      网友评论

          本文标题:A/B test

          本文链接:https://www.haomeiwen.com/subject/kmpmuhtx.html