美文网首页RuntimeiOS 收藏篇
谈谈 OC 属性修饰符的本质是什么!

谈谈 OC 属性修饰符的本质是什么!

作者: 丿行随心动 | 来源:发表于2018-09-27 14:00 被阅读24次

    属性修饰符的本质

    • assign 修饰符
    • copy 修饰符
    • atomic 修饰符
    • strong 修饰符
    • weak 修饰符
    • weakTable 实现原理

    示例代码
    注: 结合 runtime 源码,利用汇编反推出每一个修饰符的本质
    1.使用 lldb 为每一个属性的 set 方法下断点
    2.分析调试汇编代码,找到真正的操作函数
    3.去 runtime 源码中找到对应的源码

    @interface ViewController ()
    @property (assign) NSInteger assignProperty;
    @property (copy)   NSString *copytext;
    @property (strong) NSObject *strongProperty;
    @property (weak)   NSObject *weakProperty;
    @end
    @implementation ViewController
    - (void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event {
        [self test];
    }
    - (void)test {
        NSObject *obj = [NSObject new];
        self.assignProperty = 100;
        self.copytext = @"text";
        self.strongProperty = obj;
        self.weakProperty = obj;
    }
    @end
    

    assign 修饰符

    Demo`-[ViewController setAssignProperty:]:
        01. 0x102f4def8 <+0>:  sub    sp, sp, #0x20             ; =0x20 
        // 取出指向 _assignProperty 成员相对偏移量的指针
        02. 0x102f4defc <+4>:  adrp   x8, 4
        03. 0x102f4df00 <+8>:  add    x8, x8, #0x328            ; =0x328 
       
        04. 0x102f4df04 <+12>: str    x0, [sp, #0x18]
        05. 0x102f4df08 <+16>: str    x1, [sp, #0x10]
        06. 0x102f4df0c <+20>: str    x2, [sp, #0x8]
        07. 0x102f4df10 <+24>: ldr    x0, [sp, #0x8]
        08. 0x102f4df14 <+28>: ldr    x1, [sp, #0x18]
        // 取出 _assignProperty 成员相对偏移量(ldrsw 读取一个字(2个byte)的内存数据)
        09. 0x102f4df18 <+32>: ldrsw  x8, [x8]
        // 计算出 _assignProperty 的内存地址
        10. 0x102f4df1c <+36>: add    x8, x1, x8
        // 赋值
        11. 0x102f4df20 <+40>: str    x0, [x8]
        12. 0x102f4df24 <+44>: add    sp, sp, #0x20             ; =0x20 
        13. 0x102f4df28 <+48>: ret    
    
    结论: assign 修饰符没有做任何操作,本质就是得到内存空间,直接赋值
    

    copy 修饰符

    Demo`-[ViewController setCopytext:]:
        0x100f79f68 <+0>:  sub    sp, sp, #0x30             ; =0x30 
        0x100f79f6c <+4>:  stp    x29, x30, [sp, #0x20]
        0x100f79f70 <+8>:  add    x29, sp, #0x20            ; =0x20 
        0x100f79f74 <+12>: adrp   x8, 4
        0x100f79f78 <+16>: add    x8, x8, #0x32c            ; =0x32c 
        0x100f79f7c <+20>: stur   x0, [x29, #-0x8]
        0x100f79f80 <+24>: str    x1, [sp, #0x10]
        0x100f79f84 <+28>: str    x2, [sp, #0x8]
        0x100f79f88 <+32>: ldr    x1, [sp, #0x10]
        0x100f79f8c <+36>: ldur   x0, [x29, #-0x8]
        0x100f79f90 <+40>: ldrsw  x3, [x8]
        0x100f79f94 <+44>: ldr    x8, [sp, #0x8]
        0x100f79f98 <+48>: mov    x2, x8
        0x100f79f9c <+52>: bl     0x100f7a8c4               ; symbol stub for: objc_setProperty_nonatomic_copy
        0x100f79fa0 <+56>: ldp    x29, x30, [sp, #0x20]
        0x100f79fa4 <+60>: add    sp, sp, #0x30             ; =0x30 
        0x100f79fa8 <+64>: ret 
    
    结论: 第14行可以明显看出,copy 修饰符下,编译器为你调用了 objc_setProperty_nonatomic_copy, 
        幸运的是它确实就是 runtime 中的源码
    
    void objc_setProperty_nonatomic_copy(id self, SEL _cmd, id newValue, ptrdiff_t offset)
    {
        reallySetProperty(self, _cmd, newValue, offset, false, true, false);
    }
    static inline void reallySetProperty(id self, 
                                        SEL _cmd, 
                                        id newValue,
                                        ptrdiff_t offset,
                                        bool atomic, 
                                        bool copy, 
                                        bool mutableCopy)
    {
        if (offset == 0) {
            object_setClass(self, newValue);
            return;
        }
        id oldValue;
        id *slot = (id*) ((char*)self + offset);
        if (copy) {
            newValue = [newValue copyWithZone:nil];
        } else if (mutableCopy) {
            newValue = [newValue mutableCopyWithZone:nil];
        } else {
            if (*slot == newValue) return;
            newValue = objc_retain(newValue);
        }
        if (!atomic) {
            oldValue = *slot;
            *slot = newValue;
        } else {
            spinlock_t& slotlock = PropertyLocks[slot];
            slotlock.lock();
            oldValue = *slot;
            *slot = newValue;        
            slotlock.unlock();
        }
        objc_release(oldValue);
    }
    
    reallySetProperty 函数分析:
        1. 检查成员偏移量是否合法
        2. 计算出成员的地址
        3. 检查成员是否需要深浅拷贝
        4. 检查是否需要原子锁操作
        5. 取出 oldValue, 赋值 newValue
        6. release oldValue
    结论: copy 的本质就是编译器,为你调用 objc_setProperty_nonatomic_copy 函数
    

    atomic 修饰符

    由 copy 的本质, 我们可以看出实质是调用了 reallySetProperty 做了一系列操作,
    所以这里就不再进行汇编分析,有兴趣的可以自己去实践
    

    strong 修饰符

    Demo`-[ViewController setStrongProperty:]:
        0x102271fd4 <+0>:  sub    sp, sp, #0x30             ; =0x30 
        0x102271fd8 <+4>:  stp    x29, x30, [sp, #0x20]
        0x102271fdc <+8>:  add    x29, sp, #0x20            ; =0x20 
        0x102271fe0 <+12>: adrp   x8, 4
        0x102271fe4 <+16>: add    x8, x8, #0x330            ; =0x330 
        0x102271fe8 <+20>: stur   x0, [x29, #-0x8]
        0x102271fec <+24>: str    x1, [sp, #0x10]
        0x102271ff0 <+28>: str    x2, [sp, #0x8]
        0x102271ff4 <+32>: ldr    x0, [sp, #0x8]
        0x102271ff8 <+36>: ldur   x1, [x29, #-0x8]
        0x102271ffc <+40>: ldrsw  x8, [x8]
        0x102272000 <+44>: add    x8, x1, x8
        0x102272004 <+48>: str    x0, [sp]
        0x102272008 <+52>: mov    x0, x8
        0x10227200c <+56>: ldr    x1, [sp]
        0x102272010 <+60>: bl     0x1022728cc               ; symbol stub for: objc_storeStrong
        0x102272014 <+64>: ldp    x29, x30, [sp, #0x20]
        0x102272018 <+68>: add    sp, sp, #0x30             ; =0x30 
        0x10227201c <+72>: ret   
    
    结论: strong 修饰符下,编译器为你调用了 objc_storeStrong 函数, 
        它也是一个 runtime 源码中的函数
    
    void objc_storeStrong(id *location, id obj)
    {
        id prev = *location;
        if (obj == prev) {
            return;
        }
        objc_retain(obj);
        *location = obj;
        objc_release(prev);
    }
    
    objc_storeStrong 函数分析:
        1. 取出 oldValue, 对比 newValue
        2. retain newValue
        3. 赋值
        4. release oldValue
    结论: 以上可以看出 strong 修饰的成员变量, 本质是一个对应类型二级指针, 
        且编译器为我们调用了 objc_storeStrong 函数来操作成员变量
    

    weak 修饰符

    Demo`-[ViewController setWeakProperty:]:
        0x102272054 <+0>:  sub    sp, sp, #0x40             ; =0x40 
        0x102272058 <+4>:  stp    x29, x30, [sp, #0x30]
        0x10227205c <+8>:  add    x29, sp, #0x30            ; =0x30 
        0x102272060 <+12>: adrp   x8, 3
        0x102272064 <+16>: add    x8, x8, #0x334            ; =0x334 
        0x102272068 <+20>: stur   x0, [x29, #-0x8]
        0x10227206c <+24>: stur   x1, [x29, #-0x10]
        0x102272070 <+28>: str    x2, [sp, #0x18]
        0x102272074 <+32>: ldr    x0, [sp, #0x18]
        0x102272078 <+36>: ldur   x1, [x29, #-0x8]
        0x10227207c <+40>: ldrsw  x8, [x8]
        0x102272080 <+44>: add    x8, x1, x8
        0x102272084 <+48>: str    x0, [sp, #0x10]
        0x102272088 <+52>: mov    x0, x8
        0x10227208c <+56>: ldr    x1, [sp, #0x10]
        0x102272090 <+60>: bl     0x1022728d8               ; symbol stub for: objc_storeWeak
        0x102272094 <+64>: str    x0, [sp, #0x8]
        0x102272098 <+68>: ldp    x29, x30, [sp, #0x30]
        0x10227209c <+72>: add    sp, sp, #0x40             ; =0x40 
        0x1022720a0 <+76>: ret  
    
    结论: weak 修饰符下,编译器为你调用了 objc_storeWeak 函数, 它也是一个 runtime 源码中的函数
    
    id objc_storeWeak(id *location, id newObj)
    {
        return storeWeak<DoHaveOld, DoHaveNew, DoCrashIfDeallocating>
            (location, (objc_object *)newObj);
    }
    static id storeWeak(id *location, objc_object *newObj)
    {
        // 检查参数
        assert(haveOld  ||  haveNew);
        if (!haveNew) assert(newObj == nil);
        Class previouslyInitializedClass = nil;
        id oldObj;
        SideTable *oldTable;
        SideTable *newTable;
        // 检查新值和旧值
     retry:
        if (haveOld) {
            // 取出旧值
            oldObj = *location;
            // 取出旧值所在的 hashTable
            oldTable = &SideTables()[oldObj];
        } else {
            oldTable = nil;
        }
        if (haveNew) {
            // 分配新值所在的 hashTable
            newTable = &SideTables()[newObj];
        } else {
            newTable = nil;
        }
        // 对 hashTable 加锁
        SideTable::lockTwo<haveOld, haveNew>(oldTable, newTable);
        // 检查旧值与 hashTable 中取出的值是否对应(hashTable 碰撞容错机制)
        if (haveOld  &&  *location != oldObj) {
            SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
            goto retry;
        }
        if (haveNew  &&  newObj) {
            // 取出新值的类对象
            Class cls = newObj->getIsa();
            // 检查类对象是否被初始化
            if (cls != previouslyInitializedClass  &&  
                !((objc_class *)cls)->isInitialized()) 
            {
                SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
                _class_initialize(_class_getNonMetaClass(cls, (id)newObj));
                previouslyInitializedClass = cls;
                goto retry;
            }
        }
        if (haveOld) {
            // 从 hashTable 中移除旧值
            weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
        }
        if (haveNew) {
            // 向 hashTable 中插入新值
            newObj = (objc_object *)
                weak_register_no_lock(&newTable->weak_table, 
                                        (id)newObj,
                                        location, 
                                        crashIfDeallocating);
            if (newObj  &&  !newObj->isTaggedPointer()) {
                newObj->setWeaklyReferenced_nolock();
            }
            // 给成员变量赋新值
            *location = (id)newObj;
        }
        else {
            // No new value. The storage is not changed.
        }
        // 为 hashTable 开锁
        SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
        return (id)newObj;
    }
    
    结论: 综上所述,我们可以得出,weak 修饰的成员变量实际也是一个对应类型的二级指针,
        且编译器为我们调用了 objc_storeWeak 函数,来操作成员变量和对应的hashTable, 
        接下来将继续深入 weakTable 实现原理
    

    weakTable 实现原理

    alignas(StripedMap<SideTable>) static uint8_t 
        SideTableBuf[sizeof(StripedMap<SideTable>)];
    static void SideTableInit() {
        new (SideTableBuf) StripedMap<SideTable>();
    }
    static StripedMap<SideTable>& SideTables() {
        return *reinterpret_cast<StripedMap<SideTable>*>(SideTableBuf);
    }
    
    注: weakTable 是由一个静态的 SideTableBuf 对象所维护,其类型为 <StripedMap<SideTable> *>
    
    template<typename T>
    class StripedMap {
        enum { CacheLineSize = 64 };
    #if TARGET_OS_EMBEDDED
        enum { StripeCount = 8 };
    #else
        enum { StripeCount = 64 };
    #endif
        struct PaddedT {
            T value alignas(CacheLineSize);
        };
        PaddedT array[StripeCount];
        static unsigned int indexForPointer(const void *p) {
            uintptr_t addr = reinterpret_cast<uintptr_t>(p);
            return ((addr >> 4) ^ (addr >> 9)) % StripeCount;
        }
     public:
        T& operator[] (const void *p) { 
            return array[indexForPointer(p)].value; 
        }
        const T& operator[] (const void *p) const { 
            return const_cast<StripedMap<T>>(this)[p]; 
        }
        .
        .
        .
    }
    
    注: StripeMap 是一个散列表,其成员 PaddedT array[StripeCount](这里分为64个桶),
        PaddedT 内部维护着 SideTable 类型的对象,
        函数 static unsigned int indexForPointer(const void *p) 将 weak 对象指针的 hash % 64 分发入桶.
    
    enum HaveOld { DontHaveOld = false, DoHaveOld = true };
    enum HaveNew { DontHaveNew = false, DoHaveNew = true };
    struct SideTable {
        spinlock_t slock;
        RefcountMap refcnts;
        weak_table_t weak_table;
        SideTable() {
            memset(&weak_table, 0, sizeof(weak_table));
        }
        ~SideTable() {
            _objc_fatal("Do not delete SideTable.");
        }
        void lock() { slock.lock(); }
        void unlock() { slock.unlock(); }
        void forceReset() { slock.forceReset(); }
        // Address-ordered lock discipline for a pair of side tables.
        template<HaveOld, HaveNew>
        static void lockTwo(SideTable *lock1, SideTable *lock2);
        template<HaveOld, HaveNew>
        static void unlockTwo(SideTable *lock1, SideTable *lock2);
    };
    
    注: SideTable 中 slock 负责资源的线程安全, 并维护着真正的 weakTable
    
    struct weak_table_t {
        weak_entry_t *weak_entries;
        size_t    num_entries;
        uintptr_t mask;
        uintptr_t max_hash_displacement;
    };
    /// Adds an (object, weak pointer) pair to the weak table.
    id weak_register_no_lock(weak_table_t *weak_table, id referent, 
                             id *referrer, bool crashIfDeallocating);
    /// Removes an (object, weak pointer) pair from the weak table.
    void weak_unregister_no_lock(weak_table_t *weak_table, id referent, id *referrer);
    #if DEBUG
    /// Returns true if an object is weakly referenced somewhere.
    bool weak_is_registered_no_lock(weak_table_t *weak_table, id referent);
    #endif
    /// Called on object destruction. Sets all remaining weak pointers to nil.
    void weak_clear_no_lock(weak_table_t *weak_table, id referent);
    
    struct weak_entry_t {
        DisguisedPtr<objc_object> referent;
        .
        .
        .
    }
    
    注: 这里可以看出 weak_table_t 管理着一个数组, 每个元素为 <weak_entry_t *>,
        weak_entry_t 才真正存储着我们需要的 weak 对象容器
        回到函数 static id storeWeak(id *location, objc_object *newObj)
        我们可以看到:
            1.元素移除函数为 void weak_unregister_no_lock(weak_table_t *weak_table, id referent, id *referrer);
            2.元素插入函数为 id weak_register_no_lock(weak_table_t *weak_table, id referent, id *referrer, bool crashIfDeallocating);
    
    void weak_unregister_no_lock(weak_table_t *weak_table, id referent_id, 
                            id *referrer_id)
    {
        objc_object *referent = (objc_object *)referent_id;
        objc_object **referrer = (objc_object **)referrer_id;
        weak_entry_t *entry;
        if (!referent) return;
        if ((entry = weak_entry_for_referent(weak_table, referent))) {
            remove_referrer(entry, referrer);
            bool empty = true;
            if (entry->out_of_line()  &&  entry->num_refs != 0) {
                empty = false;
            }
            else {
                for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
                    if (entry->inline_referrers[i]) {
                        empty = false; 
                        break;
                    }
                }
            }
            if (empty) {
                weak_entry_remove(weak_table, entry);
            }
        }
        // Do not set *referrer = nil. objc_storeWeak() requires that the 
        // value not change.
    }
    
    注: 遍历数组找到 weak 对象,根据 num_refs(weak 对象引用计数)进行移除
    
    id weak_register_no_lock(weak_table_t *weak_table, id referent_id, 
                          id *referrer_id, bool crashIfDeallocating)
    {
        objc_object *referent = (objc_object *)referent_id;
        objc_object **referrer = (objc_object **)referrer_id;
        if (!referent  ||  referent->isTaggedPointer()) return referent_id;
        // ensure that the referenced object is viable
        bool deallocating;
        if (!referent->ISA()->hasCustomRR()) {
            deallocating = referent->rootIsDeallocating();
        }
        else {
            BOOL (*allowsWeakReference)(objc_object *, SEL) = 
                (BOOL(*)(objc_object *, SEL))
                object_getMethodImplementation((id)referent, 
                                               SEL_allowsWeakReference);
            if ((IMP)allowsWeakReference == _objc_msgForward) {
                return nil;
            }
            deallocating =
                ! (*allowsWeakReference)(referent, SEL_allowsWeakReference);
        }
        if (deallocating) {
            if (crashIfDeallocating) {
                _objc_fatal("Cannot form weak reference to instance (%p) of "
                            "class %s. It is possible that this object was "
                            "over-released, or is in the process of deallocation.",
                            (void*)referent, object_getClassName((id)referent));
            } else {
                return nil;
            }
        }
        // now remember it and where it is being stored
        weak_entry_t *entry;
        if ((entry = weak_entry_for_referent(weak_table, referent))) {
            append_referrer(entry, referrer);
        } 
        else {
            weak_entry_t new_entry(referent, referrer);
            weak_grow_maybe(weak_table);
            weak_entry_insert(weak_table, &new_entry);
        }
        // Do not set *referrer. objc_storeWeak() requires that the 
        // value not change.
        return referent_id;
    }
    static void weak_entry_insert(weak_table_t *weak_table, weak_entry_t *new_entry)
    {
        weak_entry_t *weak_entries = weak_table->weak_entries;
        assert(weak_entries != nil);
        size_t begin = hash_pointer(new_entry->referent) & (weak_table->mask);
        size_t index = begin;
        size_t hash_displacement = 0;
        while (weak_entries[index].referent != nil) {
            index = (index+1) & weak_table->mask;
            if (index == begin) bad_weak_table(weak_entries);
            hash_displacement++;
        }
        weak_entries[index] = *new_entry;
        weak_table->num_entries++;
        if (hash_displacement > weak_table->max_hash_displacement) {
            weak_table->max_hash_displacement = hash_displacement;
        }
    }
    static void weak_resize(weak_table_t *weak_table, size_t new_size)
    {
        size_t old_size = TABLE_SIZE(weak_table);
        weak_entry_t *old_entries = weak_table->weak_entries;
        weak_entry_t *new_entries = (weak_entry_t *)
            calloc(new_size, sizeof(weak_entry_t));
        weak_table->mask = new_size - 1;
        weak_table->weak_entries = new_entries;
        weak_table->max_hash_displacement = 0;
        weak_table->num_entries = 0;  // restored by weak_entry_insert below
        if (old_entries) {
            weak_entry_t *entry;
            weak_entry_t *end = old_entries + old_size;
            for (entry = old_entries; entry < end; entry++) {
                if (entry->referent) {
                    weak_entry_insert(weak_table, entry);
                }
            }
            free(old_entries);
        }
    }
    
    注: 该函数负责 weak_table_t 的插入(weak_entry_insert)和扩容(weak_grow_maybe)
        其中 weak_entry_insert 也是采用的散列分布的方式插入元素,使用了一次线性探测法来解决 hash 碰撞问题
    

    github: https://github.com/huxiaoluder
    掘金: https://juejin.im/user/5b76e3a3f265da435a484d37
    邮箱: huxiaoluder@163.com

    相关文章

      网友评论

        本文标题:谈谈 OC 属性修饰符的本质是什么!

        本文链接:https://www.haomeiwen.com/subject/kmqeoftx.html