美文网首页
数据结构及算法基础--并查集(union-find)

数据结构及算法基础--并查集(union-find)

作者: zxx901221 | 来源:发表于2018-07-13 14:47 被阅读0次

    并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。这一类问题近几年来反复出现在信息学的国际国内赛题中,其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述。

    首先我们给出并查集(union-find)的api:

    1242043-20171003110837849-904453171.png

    在《algorithm》书中,对与uf的应用直接给出了代码,但是其中find和union方法并没有直接实现,而是空着的。书中代码如下:

    image

    注意:这里看见有一个StdIn的类作为类似于输入流的作用,这个在java中是不存在的,这是这本书自己构造的一个类。相信以后在这本书中也会有类似的部分,可以在网上找到其中的具体实施代码,我会发送出来的。

    为什么不直接实现find和union方法呢,这里会考虑到数据结构和算法复杂度的问题。

    我们将其分为:quickunion,quickfind,weightedquickunion,weightedquickunion with path compression;

    1)Quick-Find

    其中判断p和q两个元素是否连接便是让两个元素的id[]相同。

    此时,find()便是直接返回id[p]的值

    而union()便是将连接的两个集合的id[]变为一致:当然,我们首先要判断她们是不是已经连接;

    image

    由上图便可看出,我们union(3,4),得到两者的id[]相同,即id[3]=id[4]=3(id值为连接的集合包含的任意一个数);

    得到的代码如下:

    package unionFind;
    public class QuickFindUF {
    private int id[];
    private int count;
    public QuickFindUF(int N){
    count=N;
    id=new int[N];
    for(int i=0;i<N;i++){
    id[i]=i;
    }
    }
    public int count(){
    return count;
    }
    public boolean connected(int p,int q){
    return find(p)==find(q);
    }
    public int find(int p){
    return id[p];
    }
    public void union(int p,int q){
    int pid=find(p);
    int qid=find(q);
    if(pid==qid)return;
    for(int i=0;i<id.length;i++){
    if(id[i]==pid)id[i]=qid;
    }
    count--;
    }
    }
    2)Quick-Union

    Quick-Union的结构如下图所示:

    image

    即每一个结点的id为上一个结点。而根节点便是root=id[root];

    判断两个元素是否连接则是判断两个元素的根(root)是否相同。

    find()则为找到元素的根节点;

    union(p,q)即将p的根节点与q的根节点连接。

    代码实现如下:

    package unionFind;
    public class QuickUnionUF {
    private int id[];
    private int count;
    public QuickUnionUF(int N){
    id=new int[N];
    count=N;
    for(int i=0;i<N;i++){
    id[i]=i;
    }
    }
    public int count(){
    return count;
    }
    public int find(int i){
    while(i!=id[i]){
    i=id[i];
    }
    return i;
    }
    public void union(int p,int q){
    if(find(p)==find(q))return;
    id[find(p)]=find(q);
    count--;
    }
    public boolean connected(int p,int q){
    return find(p)==find(q);
    }
    }
    3)Weighted Quick-Union

    当然,我们如果胡乱的将根节点相互连接,会导致这个树的结构非常糟糕,比如:

    image

    我们可以看到这个树的结构非常非常糟糕。

    为了避免这个情况,我们记录树的大小,并且总是将小的树连接到大的树:

    image

    使用这种方法可以很大程度的优化树的结构,例如上图的树我们可以变为:

    image

    具体实现代码如下:

    package unionFind;
    public class WeightedQuickUnionUF {
    private int id[];
    private int count;
    private int sz[];
    public WeightedQuickUnionUF(int N){
    count=N;
    id=new int[N];
    sz=new int[N];
    for(int i=0;i<N;i++){
    id[i]=i;
    sz[i]=1;
    }
    }
    public int find(int p){
    while(p!=id[p])p=id[p];
    return p;
    }
    public void union(int p,int q){
    int pid=find(p);
    int qid=find(q);
    if(qid==pid)return ;
    if(sz[pid]<sz[qid]){
    id[pid]=qid;
    sz[qid]+=sz[pid];
    } else{
    id[qid]=pid;
    sz[pid]+=sz[qid];
    }
    count--;
    }
    public int count(){
    return count;
    }
    public boolean connected(int p,int q){
    return find(p)==find(q);
    }
    }

    4)Weighted Quick-Union with Path Compression

    最优情况下,我们希望所有的节点都直接连接到根节点上,但是又不希望像QuickUnion那样大量修改连接,这时,我们可以在检查节点的同时将它与根节点直接连接。

    例如,我们对下列并查集进行union(7,3);

    image

    在采取最优算法下,结果如下:

    image

    可以看出,我们将遍历到的节点都直接与根节点直接连接,这一切只需要在find内的循环进行修改就可以实现。

    具体的代码如下:

    package unionFind;
    public class WeightedQuickUnionUFWPC {
    private int id[];
    private int count;
    private int sz[];
    public WeightedQuickUnionUFWPC(int N){
    count=N;
    id=new int[N];
    sz=new int[N];
    for(int i=0;i<N;i++){
    id[i]=i;
    sz[i]=1;
    }
    }
    public int find(int p){
    int root=p;
    while(root!=id[root])root=id[root];
    while(p!=root){
    int x=p;
    id[x]=root;
    p=id[p];
    }
    return root;
    }
    public void union(int p,int q){
    int pid=find(p);
    int qid=find(q);
    if(qid==pid)return ;
    if(sz[pid]<sz[qid]){
    id[pid]=qid;
    sz[qid]+=sz[pid];
    } else{
    id[qid]=pid;
    sz[pid]+=sz[qid];
    }
    count--;
    }
    public int count(){
    return count;
    }
    public boolean connected(int p,int q){
    return find(p)==find(q);
    }
    }
    这四种方法能够适应不同的情况,但是对于算法复杂度来说,这四种方法就会有很大的差别:

    image

    对于每一项的得出,《algorithm》给出了很详细的解释,我希望自己能够有时间写一篇文章来细讲一下。(别说了。感觉还有好多坑没填)
    转载出处:https://www.cnblogs.com/DSNFZ/articles/7623522.html

    相关文章

      网友评论

          本文标题:数据结构及算法基础--并查集(union-find)

          本文链接:https://www.haomeiwen.com/subject/knnjpftx.html