美文网首页
深入理解Java虚拟机第三版学习笔记

深入理解Java虚拟机第三版学习笔记

作者: 竹草席 | 来源:发表于2021-03-04 15:05 被阅读0次

    第2章 Java内存区域与内存溢出异常

    虚拟机运行时内存模型

    1.方法区

    方法区(Method Area)与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类型信息、常量、静态变量、即时编译器编译后的代码缓存等数据。虽然《Java虚拟机规范》中把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫作“非堆”(Non-Heap),目的是与Java堆区分开来。

    2.虚拟机栈

    与程序计数器一样,Java虚拟机栈(Java Virtual Machine Stack)也是线程私有的,它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的线程内存模型:每个方法被执行的时候,Java虚拟机都会同步创建一个栈帧 [1] (Stack Frame)用于存储局部变量表、操作数栈、动态连接、方法出口等信息。每一个方法被调用直至执行完毕的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。

    java 虚拟机规范允许Java栈的大小是动态的或者是固定不变的。如果采用固定大小的Java虚拟机栈设计,那么每一条线程的Java虚拟机栈容量应当在线程创建的时候独立地选定,Java虚拟机实现应当提供给程序员或者最终用户调节虚拟机栈初始容量的手段。对于可以动态扩展和收缩Java虚拟机栈来说,则应当提供调节其最大、最小容量的手段。

    在《Java虚拟机规范》中,对这个内存区域规定了两类异常状况:如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常;如果Java虚拟机栈容量可以动态扩展 [2] ,当栈扩展时无法申请到足够的内存会抛出OutOfMemoryError异常。

    3.本地方法栈

    本地方法栈(Native Method Stacks)与虚拟机栈所发挥的作用是非常相似的,也是线程私有的。其区别只是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的本地(Native)方法服务。

    方法区的概念跟永久代本质上不同

    根据《Java虚拟机规范》的规定,如果方法区无法满足新的内存分配需求时,将抛出OutOfMemoryError异常。

    4.堆

    对于Java应用程序来说,Java堆(Java Heap)是虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,Java世界里“几乎”所有的对象实例都在这里分配内存。在《Java虚拟机规范》中对Java堆的描述是:“所有的对象实例以及数组都应当在堆上分配 ”

    Java堆既可以被实现成固定大小的,也可以是可扩展的,不过当前主流的Java虚拟机都是按照可扩展来实现的(通过参数-Xmx和-Xms设定)。如果在Java堆中没有内存完成实例分配,并且堆也无法再扩展时,Java虚拟机将会抛出OutOfMemoryError异常。

    5.程序计数器

    程序计数器(Program Counter Register)是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器。在Java虚拟机的概念模型里 [1] ,字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,它是程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。

    由于Java虚拟机的多线程是通过线程轮流切换、分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器(对于多核处理器来说是一个内核)只会执行一条线程中的指令。因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各条线程之间计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存。

    如果线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是本地(Native)方法,这个计数器值则应为(Undefined)。此内存区域是唯一一个在《Java虚拟机规范》中没有规定任何OutOfMemoryError情况的区域。

    6.运行时常量池

    运行时常量池(Runtime Constant Pool)是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池表(Constant Pool Table),用于存放编译期生成的各种字面量与符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。

    既然运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法再申请到内存时会抛出OutOfMemoryError异常。

    7.直接内存

    直接内存(Direct Memory)并不是虚拟机运行时数据区的一部分,也不是《Java虚拟机规范》中定义的内存区域。但是这部分内存也被频繁地使用,而且也可能导致OutOfMemoryError异常出现

    对象的创建

    1.new关键字

    虚拟机遇到一条字节码new指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已被加载、解析和初始化过。如果没有,那必须先执行相应的类加载过程。在类加载检查通过后,接下来虚拟机将为新生对象分配内存。

    java堆根据堆内存是否绝对规整的,分配时分别使用:(规整)指针碰撞、(不规整,已使用和未使用交错)空闲列表。

    堆内存是否规整由垃圾收集器是否带有空间压缩整理的能力决定。

    多线程情况下划分可用空间:

    一种是对分配的内存空间的动作进行同步处理。实际上虚拟机是采用CAS配上失败重试的方式保证更新操作的原子性;另外一种是把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在Java堆中预先分配一小块内存,称为本地线程分配缓冲(Thread Local AllocationBuffer,TLAB)。

    内存分配完成之后,虚拟机必须将分配到的内存空间(但不包括对象头)都初始化为零值,如果使用了TLAB的话,这一项工作也可以提前至TLAB分配时顺便进行。这步操作保证了对象的实例字段在Java代码中可以不赋初始值就直接使用,使程序能访问到这些字段的数据类型所对应的零值。

    接下来,Java虚拟机还要对对象进行必要的设置,例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码(实际上对象的哈希码会延后到真正调用Object::hashCode()方法时才计算)、对象的GC分代年龄等信息。

    在虚拟机把上述工作都完成后,就剩下最后的java程序里的对象初始化,也就是执行init()方法,执行完构造方法后,一个对象完成创建。

    2.内存分布

    对象在堆内存中的存储布局可以划分为三个部分:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。

    虚拟机对象的对象头部分包括两类信息。第一类是用于存储对象自身的运行时数据。对象头的另外一部分是类型指针,即对象指向它的类型元数据的指针,Java虚拟机通过这个指针来确定该对象是哪个类的实例。

    实例数据部分是对象真正存储的有效信息。

    3.对象的访问定位

    对象访问方式也是由虚拟机实现而定的,主流的访问方式主要有使用句柄和直接指针两种。具体两种方按的示意图参考原文。

    句柄:一个包含指针的数据结构,包含到对象实例数据的指针和到对象类型数据的指针。(也可以理解为一个指向指针的指针)

    直接指针:直接指向对象实例数据,实例数据里再包含指向对象类型的数据指针。

    这两种对象访问方式各有优势,使用句柄来访问的最大好处就是reference中存储的是稳定句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而reference本身不需要被修改。

    使用直接指针来访问最大的好处就是速度更快,它节省了一次指针定位的时间开销,由于对象访问在Java中非常频繁,因此这类开销积少成多也是一项极为可观的执行成本。

    第三章 垃圾收集器与内存分配策略

    确定对象是否存活的方案

    1.对象计数器

    在对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加一;当引用失效时,计数器值就减一;任何时刻计数器为零的对象就是不可能再被使用的。

    单纯的引用计数就很难解决对象之间相互循环引用的问题。

    2.可达性分析

    通过 一系列称为“GC Roots”的根对象作为起始节点集,从这些节点开始,根据引用关系向下搜索,搜索过程所走过的路径称为“引用链”(Reference Chain),如果某个对象到GC Roots间没有任何引用链相连,或者用图论的话来说就是从GC Roots到这个对象不可达时,则证明此对象是不可能再被使用的。

    在Java技术体系里面,固定可作为GC Roots的对象包括以下几种: ·在虚拟机栈(栈帧中的本地变量表)中引用的对象,譬如各个线程被调用的方法堆栈中使用到的参数、局部变量、临时变量等。 ·在方法区中类静态属性引用的对象,譬如Java类的引用类型静态变量。 ·在方法区中常量引用的对象,譬如字符串常量池(String Table)里的引用。 ·在本地方法栈中JNI(即通常所说的Native方法)引用的对象。 ·Java虚拟机内部的引用,如基本数据类型对应的Class对象,一些常驻的异常对象(比如NullPointExcepiton、OutOfMemoryError)等,还有系统类加载器。 ·所有被同步锁(synchronized关键字)持有的对象。 ·反映Java虚拟机内部情况的JMXBean、JVMTI中注册的回调、本地代码缓存等。

    java引用分类

    在JDK 1.2版之后,Java对引用的概念进行了扩充,将引用分为强引用(Strongly Re-ference)、软引用(Soft Reference)、弱引用(Weak Reference)和虚引用(Phantom Reference)4种,这4种引用强度依次逐渐减弱。

    ·强引用是最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“Objectobj=new Object()”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。 ·软引用是用来描述一些还有用,但非必须的对象。只被软引用关联着的对象,在系统将要发生内存溢出异常前,会把这些对象列进回收范围之中进行第二次回收,如果这次回收还没有足够的内存,才会抛出内存溢出异常。在JDK 1.2版之后提供了SoftReference类来实现软引用。 ·弱引用也是用来描述那些非必须对象,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生为止。当垃圾收集器开始工作,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK 1.2版之后提供了WeakReference类来实现弱引用。 ·虚引用也称为“幽灵引用”或者“幻影引用”,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的只是为了能在这个对象被收集器回收时收到一个系统通知。在JDK 1.2版之后提供了PhantomReference类来实现虚引用。

    java中对象死亡判断方式

    即使在可达性分析算法中判定为不可达的对象,也不是“非死不可”的,这时候它们暂时还处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行可达性分析后发现没有与GC Roots相连接的引用链,那它将会被第一次标记,随后进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法。

    如果这个对象被判定为确有必要执行finalize()方法,那么该对象将会被放置在一个名为F-Queue的队列之中,并在稍后由一条由虚拟机自动建立的、低调度优先级的Finalizer线程去执行它们finalize()方法。

    finalize方法只会被调用一次,如果执行过一次,第二次还是被标记,那么肯定会被回收。它并不能等同于C和C++语言中的析构函数,而是Java刚诞生时为了使传统C、C++程序员更容易接受Java所做出的一项妥协。它的运行代价高昂,不确定性大,无法保证各个对象的调用顺序,如今已被官方明确声明为不推荐使用的语法。

    更具体内容阅读原文3.2.4小节。

    回收方法区

    方法区的垃圾收集主要回收两部分内容:废弃的常量和不再使用的类型。

    具体判断回收条件阅读原文3.2.5小节。

    分代收集理论

    当前商业虚拟机的垃圾收集器,大多数都遵循了“分代收集”(Generational Collection) 的理论进行设计,分代收集名为理论,实质是一套符合大多数程序运行实际情况的经验法则,它建立在两个分代假说之上: 1)弱分代假说(Weak Generational Hypothesis):绝大多数对象都是朝生夕灭的。(通常称为新生代) 2)强分代假说(Strong Generational Hypothesis):熬过越多次垃圾收集过程的对象就越难以消亡。(通常称为老年代)

    根据前两条假说逻辑推理得出的隐含推论:

    3)跨代引用假说(Intergenerational Reference Hypothesis):跨代引用相对于同代引用来说仅占极少数。

    分代收集是一个理论思想,根据不同的区域特性会有对应的具体收集算法。常用的算法有,标记清除、标记复制、标记整理。

    网上文章常说的把整个堆区划分为新生代和老年代;新生代又被划分成Eden 空间、 From Survivor 和 To Survivor 三块区域。这是经典一直标记复制算法的一种实现,不能认为每一个虚拟机都使用此方法实现。

    标记-清除算法

    算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后,统一回收掉所有被标记的对象,也可以反过来,标记存活的对象,统一回收所有未被标记的对象。标记过程就是对象是否属于垃圾的判定过程。

    它的主要缺点有两个:第一个是执行效率不稳定,如果Java堆中包含大量对象,而且其中大部分是需要被回收的,这时必须进行大量标记和清除的动作,导致标记和清除两个过程的执行效率都随对象数量增长而降低;第二个是内存空间的碎片化问题,标记、清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致当以后在程序运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

    标记-复制算法

    1969年Fenichel提出了一种称为“半区复制”(Semispace Copying)的垃圾收集算法,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。如果内存中多数对象都是存活的,这种算法将会产生大量的内存间复制的开销,但对于多数对象都是可回收的情况,算法需要复制的就是占少数的存活对象,而且每次都是针对整个半区进行内存回收,分配内存时也就不用考虑有空间碎片的复杂情况,只要移动堆顶指针,按顺序分配即可。这样实现简单,运行高效,不过其缺陷也显而易见,这种复制回收算法的代价是将可用内存缩小为了原来的一半,空间浪费未免太多了一点。

    现在的商用Java虚拟机大多都优先采用了这种收集算法去回收新生代。

    网上文章经常提到的新生代回收策略

    在1989年,Andrew Appel针对具备“朝生夕灭”特点的对象,提出了一种更优化的半区复制分代策略,现在称为“Appel式回收”。HotSpot虚拟机的Serial、ParNew等新生代收集器均采用了这种策略来设计新生代的内存布局 [1] 。Appel式回收的具体做法是把新生代分为一块较大的Eden空间和两块较小的Survivor空间,每次分配内存只使用Eden和其中一块Survivor。发生垃圾搜集时,将Eden和Survivor中仍然存活的对象一次性复制到另外一块Survivor空间上,然后直接清理掉Eden和已用过的那块Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8∶1,也即每次新生代中可用内存空间为整个新生代容量的90%(Eden的80%加上一个Survivor的10%),只有一个Survivor空间,即10%的新生代是会被“浪费”的。当然,98%的对象可被回收仅仅是“普通场景”下测得的数据,任何人都没有办法百分百保证每次回收都只有不多于10%的对象存活,因此Appel式回收还有一个充当罕见情况的“逃生门”的安全设计,当Survivor空间不足以容纳一次Minor GC之后存活的对象时,就需要依赖其他内存区域(实际上大多就是老年代)进行分配担保(Handle Promotion)。

    缺点:

    标记-复制算法在对象存活率较高时就要进行较多的复制操作,效率将会降低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。

    标记-整理算法

    针对老年代对象的存亡特征,1974年Edward Lueders提出了另外一种有针对性的“标记-整理”(Mark-Compact)算法,其中的标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向内存空间一端移动,然后直接清理掉边界以外的内存。

    缺点:

    如果移动存活对象,尤其是在老年代这种每次回收都有大量对象存活区域,移动存活对象并更新所有引用这些对象的地方将会是一种极为负重的操作,而且这种对象移动操作必须全程暂停用户应用程序才能进行。

    3.4到3.7小节跳过未阅读

    实战:内存分配和回收策略

    Java技术体系的自动内存管理,最根本的目标是自动化地解决两个问题:自动给对象分配内存以及自动回收分配给对象的内存。

    在经典分代的设计下,新生对象通常会分配在新生代中,少数情况下(例如对象大小超过一定阈值)也可能会直接分配在老年代。对象分配的规则并不是固定的,《Java虚拟机规范》并未规定新对象的创建和存储细节,这取决于虚拟机当前使用的是哪一种垃圾收集器,以及虚拟机中与内存相关的参数的设定。

    对象优先在eden分配
    大对象直接进入老年代
    长期存活的对象将进入老年代
    动态对象年龄判断

    为了能更好地适应不同程序的内存状况,HotSpot虚拟机并不是永远要求对象的年龄必须达到-XX:MaxTenuringThreshold才能晋升老年代,如果在Survivor空间中相同年龄所有对象大小的总和大于 Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无须等到-XX:MaxTenuringThreshold中要求的年龄。

    空间分配担保

    在发生Minor GC之前,虚拟机必须先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果这个条件成立,那这一次Minor GC可以确保是安全的。如果不成立,则虚拟机会先查看-XX:HandlePromotionFailure参数的设置值是否允许担保失败(Handle Promotion Failure);如果允许,那会继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大于,将尝试进行一次Minor GC,尽管这次Minor GC是有风险的;如果小于,或者-XX:HandlePromotionFailure设置不允许冒险,那这时就要改为进行一次Full GC。

    第四章虚拟机性能监控、故障处理工具

    跳过未阅读

    第五章调优案例分析与实践

    跳过未阅读

    第六章类文件结构

    平台无关性实现基础--字节码

    实现语言无关性的基础仍然是虚拟机和字节码存储格式。Java虚拟机不与包括Java语言在内的任何程序语言绑定,它只与“Class文件”这种特定的二进制文件格式所关联,Class文件中包含了Java虚拟机指令集、符号表以及若干其他辅助信息。

    基于无关性,所以才会出现很多运行于java虚拟机之上的语言,如Kotlin、Clojure、Groovy、JRuby、JPython、Scala等。

    任何一个Class文件都对应着唯一的一个类或接口的定义信息 ,但是反过来说,类或接口并不一定都得定义在文件里(譬如类或接口也可以动态生成,直接送入类加载器中)

    Class文件是一组以8个字节为基础单位的二进制流,各个数据项目严格按照顺序紧凑地排列在文件之中,中间没有添加任何分隔符,这使得整个Class文件中存储的内容几乎全部是程序运行的必要数据,没有空隙存在。当遇到需要占用8个字节以上空间的数据项时,则会按照高位在前 [2] 的方式分割成若干个8个字节进行存储。

    根据《Java虚拟机规范》的规定,Class文件格式采用一种类似于C语言结构体的伪结构来存储数据,这种伪结构中只有两种数据类型:“无符号数”和“表”。

    • 无符号数属于基本的数据类型,以u1、u2、u4、u8来分别代表1个字节、2个字节、4个字节和8个字节的无符号数,无符号数可以用来描述数字、索引引用、数量值或者按照UTF-8编码构成字符串值。

    • 表是由多个无符号数或者其他表作为数据项构成的复合数据类型,为了便于区分,所有表的命名都习惯性地以“_info”结尾。表用于描述有层次关系的复合结构的数据,整个Class文件本质上也可以视作是一张表

    无论是无符号数还是表,当需要描述同一类型但数量不定的多个数据时,经常会使用一个前置的容量计数器加若干个连续的数据项的形式,这时候称这一系列连续的某一类型的数据为某一类型的“集 合”。

    class文件中各个数据项的含义,阅读原文6.3小节

    第七章虚拟机类加载机制

    Java虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验、转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这个过程被称作虚拟机的类加载机制。

    与那些在编译时需 要进行连接的语言不同,在Java语言里面,类型的加载、连接和初始化过程都是在程序运行期间完成的,这种策略让Java语言进行提前编译会面临额外的困难,也会让类加载时稍微增加一些性能开销,但是却为Java应用提供了极高的扩展性和灵活性,Java天生可以动态扩展的语言特性就是依赖运行期动态加载和动态连接这个特点实现的。

    类加载的生命周期

    一个类型从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期将会经历加载(Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(Using)和卸载(Unloading)七个阶段,其中验证、准备、解析三个部分统称为连接(Linking)。

    [图片上传失败...(image-6cb6fe-1614841417234)]

    加载、验证、准备、初始化和卸载这五个阶段的顺序是确定的,类型的加载过程必须按照这种顺序按部就班地开始,而解析阶段则不一定:它在某些情况下可以在初始化阶段之后再开始,这是为了支持Java语言的运行时绑定特性(也称为动态绑定或晚期绑定)。请注意,这里笔者写的是按部就班地“开始”,而不是按部就班地“进行”或按部就班地“完成”,强调这点是因为这些阶段通常都是互相交叉地混合进行的,会在一个阶段执行的过程中调用、激活另一个阶段。

    1.加载

    “加载”(Loading)阶段是整个“类加载”(Class Loading)过程中的一个阶段,希望读者没有混淆这两个看起来很相似的名词。在加载阶段,Java虚拟机需要完成以下三件事情: 1)通过一个类的全限定名来获取定义此类的二进制字节流。 2)将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。 3)在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口。

    加载阶段与连接阶段的部分动作(如一部分字节码文件格式验证动作)是交叉进行的,加载阶段尚未完成,连接阶段可能已经开始,但这些夹在加载阶段之中进行的动作,仍然属于连接阶段的一部分,这两个阶段的开始时间仍然保持着固定的先后顺序。

    2.验证

    验证是连接阶段的第一步,这一阶段的目的是确保Class文件的字节流中包含的信息符合《Java虚拟机规范》的全部约束要求,保证这些信息被当作代码运行后不会危害虚拟机自身的安全。

    验证阶段大致上会完成下面四个阶段的检验动作:文件格式验证、元数据验证、字节码验证和符号引用验证。

    3.准备

    准备阶段是正式为类中定义的变量(即静态变量,被static修饰的变量)分配内存并设置类变量初始值的阶段,从概念上讲,这些变量所使用的内存都应当在方法区中进行分配,但必须注意到方法区本身是一个逻辑上的区域,在JDK 7及之前,HotSpot使用永久代来实现方法区时,实现是完全符合这种逻辑概念的;而在JDK 8及之后,类变量则会随着Class对象一起存放在Java堆中,这时候“类变量在方法区”就完全是一种对逻辑概念的表述了。

    关于准备阶段,还有两个容易产生混淆的概念笔者需要着重强调,首先是这时候进行内存分配的仅包括类变量,而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在Java堆中。其次是这里所说的初始值“通常情况”下是数据类型的零值,假设一个类变量的定义为: public static int value = 123; 那变量value在准备阶段过后的初始值为0而不是123,因为这时尚未开始执行任何Java方法,而把value赋值为123的putstatic指令是程序被编译后,存放于类构造器<clinit>()方法之中,所以把value赋值为123的动作要到类的初始化阶段才会被执行。

    上面提到在“通常情况”下初始值是零值,那言外之意是相对的会有某些“特殊情况”:如果类字段的字段属性表中存在ConstantValue属性,那在准备阶段变量值就会被初始化为ConstantValue属性所指定的初始值,假设上面类变量value的定义修改为: public static final int value = 123; 编译时Javac将会为value生成ConstantValue属性,在准备阶段虚拟机就会根据Con-stantValue的设置将value赋值为123。

    4.解析

    解析阶段是Java虚拟机将常量池内的符号引用替换为直接引用的过程。

    在解析阶段如果查找失败出现错误就会包java.lang.NoSuch*Error异常。

    如果发现不具备对此方法、类、或者字段的访问权限,将抛出java.lang.IllegalAccessError异常。

    在JDK 9之前,Java接口中的所有方法都默认是public的,也没有模块化的访问约束,所以不存在访问权限的问题,接口方法的符号解析就不可能抛出java.lang.IllegalAccessError异常。但在JDK 9中增加了接口的静态私有方法,也有了模块化的访问约束,所以从JDK 9起,接口方法的访问也完全有可能因访问权限控制而出现java.lang.IllegalAccessError异常。

    5.初始化

    类的初始化阶段是类加载过程的最后一个步骤,之前介绍的几个类加载的动作里,除了在加载阶段用户应用程序可以通过自定义类加载器的方式局部参与外,其余动作都完全由Java虚拟机来主导控制。直到初始化阶段,Java虚拟机才真正开始执行类中编写的Java程序代码,将主导权移交给应用程序。

    进行准备阶段时,变量已经赋过一次系统要求的初始零值,而在初始化阶段,则会根据程序员通过程序编码制定的主观计划去初始化类变量和其他资源。我们也可以从另外一种更直接的形式来表达:初始化阶段就是执行类构造器<clinit>()方法的过程。<clinit>()并不是程序员在Java代码中直接编写的方法,它是Javac编译器的自动生成物。

    ·<clinit>()方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块(static{}块)中的语句合并产生的,编译器收集的顺序是由语句在源文件中出现的顺序决定的,静态语句块中只能访问到定义在静态语句块之前的变量,定义在它之后的变量,在前面的静态语句块可以赋值,但是不能访问。

    ·<clinit>()方法与类的构造函数(即在虚拟机视角中的实例构造器<init>()方法)不同,它不需要显式地调用父类构造器,Java虚拟机会保证在子类的<clinit>()方法执行前,父类的<clinit>()方法已经执行完毕。因此在Java虚拟机中第一个被执行的<clinit>()方法的类型肯定是java.lang.Object。

    ·由于父类的<clinit>()方法先执行,也就意味着父类中定义的静态语句块要优先于子类的变量赋值操作。

    ·<clinit>()方法对于类或接口来说并不是必需的,如果一个类中没有静态语句块,也没有对变量的赋值操作,那么编译器可以不为这个类生成<clinit>()方法。

    ·接口中不能使用静态语句块,但仍然有变量初始化的赋值操作,因此接口与类一样都会生成 <clinit>()方法。但接口与类不同的是,执行接口的<clinit>()方法不需要先执行父接口的<clinit>()方法,因为只有当父接口中定义的变量被使用时,父接口才会被初始化。此外,接口的实现类在初始化时也一样不会执行接口的<clinit>()方法。

    ·Java虚拟机必须保证一个类的<clinit>()方法在多线程环境中被正确地加锁同步,如果多个线程同时去初始化一个类,那么只会有其中一个线程去执行这个类的<clinit>()方法,其他线程都需要阻塞等待,直到活动线程执行完毕<clinit>()方法。如果在一个类的<clinit>()方法中有耗时很长的操作,那就可能造成多个进程阻塞。

    类加载器

    类与类加载器

    类加载器虽然只用于实现类的加载动作,但它在Java程序中起到的作用却远超类加载阶段。对于任意一个类,都必须由加载它的类加载器和这个类本身一起共同确立其在Java虚拟机中的唯一性,每一个类加载器,都拥有一个独立的类名称空间。这句话可以表达得更通俗一些:比较两个类是否“相等”,只有在这两个类是由同一个类加载器加载的前提下才有意义,否则,即使这两个类来源于同一个Class文件,被同一个Java虚拟机加载,只要加载它们的类加载器不同,那这两个类就必定不相等。 这里所指的“相等”,包括代表类的Class对象的equals()方法、isAssignableFrom()方法、isInstance()方法的返回结果,也包括了使用instanceof关键字做对象所属关系判定等各种情况。

    双亲委派模型

    ·启动类加载器(Bootstrap Class Loader):前面已经介绍过,这个类加载器负责加载存放在<JAVA_HOME>\lib目录,或者被-Xbootclasspath参数所指定的路径中存放的,而且是Java虚拟机能够识别的(按照文件名识别,如rt.jar、tools.jar,名字不符合的类库即使放在lib目录中也不会被加载)类库加载到虚拟机的内存中。启动类加载器无法被Java程序直接引用,用户在编写自定义类加载器时,如果需要把加载请求委派给引导类加载器去处理,那直接使用null代替即可。

    ·扩展类加载器(Extension Class Loader):这个类加载器是在类sun.misc.Launcher$ExtClassLoader中以Java代码的形式实现的。它负责加载<JAVA_HOME>\lib\ext目录中,或者被java.ext.dirs系统变量所指定的路径中所有的类库。根据“扩展类加载器”这个名称,就可以推断出这是一种Java系统类库的扩展机制,JDK的开发团队允许用户将具有通用性的类库放置在ext目录里以扩展Java SE的功能,在JDK9之后,这种扩展机制被模块化带来的天然的扩展能力所取代。由于扩展类加载器是由Java代码实现的,开发者可以直接在程序中使用扩展类加载器来加载Class文件。

    ·应用程序类加载器(Application Class Loader):这个类加载器由sun.misc.Launcher$AppClassLoader来实现。由于应用程序类加载器是ClassLoader类中的getSystem-ClassLoader()方法的返回值,所以有些场合中也称它为“系统类加载器”。它负责加载用户类路径(ClassPath)上所有的类库,开发者同样可以直接在代码中使用这个类加载器。如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。

    image

    双亲委派模型的工作过程是:如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器去完成,每一个层次的类加载器都是如此,因此所有的加载请求最终都应该传送到最顶层的启动类加载器中,只有当父加载器反馈自己无法完成这个加载请求(它的搜索范围中没有找到所需的类)时,子加载器才会尝试自己去完成加载。

    使用双亲委派模型来组织类加载器之间的关系,一个显而易见的好处就是Java中的类随着它的类加载器一起具备了一种带有优先级的层次关系。例如类java.lang.Object,它存放在rt.jar之中,无论哪一个类加载器要加载这个类,最终都是委派给处于模型最顶端的启动类加载器进行加载,因此Object类 在程序的各种类加载器环境中都能够保证是同一个类。反之,如果没有使用双亲委派模型,都由各个类加载器自行去加载的话,如果用户自己也编写了一个名为java.lang.Object的类,并放在程序的ClassPath中,那系统中就会出现多个不同的Object类,Java类型体系中最基础的行为也就无从保证,应用程序将会变得一片混乱。如果读者有兴趣的话,可以尝试去写一个与rt.jar类库中已有类重名的Java类,将会发现它可以正常编译,但永远无法被加载运行。

    双亲委派模型对于保证Java程序的稳定运作极为重要,但它的实现却异常简单,用以实现双亲委 派的代码只有短短十余行,全部集中在java.lang.ClassLoader的loadClass()方法之中。

    <pre spellcheck="false" class="md-fences md-end-block ty-contain-cm modeLoaded" lang="java" cid="n183" mdtype="fences" style="box-sizing: border-box; overflow: visible; font-family: Monaco, Consolas, "Andale Mono", "DejaVu Sans Mono", monospace; margin-top: 0px; margin-bottom: 20px; font-size: 0.9rem; display: block; break-inside: avoid; text-align: left; white-space: normal; background: rgb(51, 51, 51); position: relative !important; padding: 10px 10px 10px 30px; width: inherit; color: rgb(184, 191, 198); font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;">protected synchronized Class<?> loadClass(String name, boolean resolve) throws ClassNotFoundException
    {
    // 首先,检查请求的类是否已经被加载过了
    Class c = findLoadedClass(name);
    if (c == null) {
    try {
    if (parent != null) {
    c = parent.loadClass(name, false);
    } else {
    c = findBootstrapClassOrNull(name);
    }
    } catch (ClassNotFoundException e) {
    // 如果父类加载器抛出ClassNotFoundException
    // 说明父类加载器无法完成加载请求
    }
    if (c == null) {
    // 在父类加载器无法加载时
    // 再调用本身的findClass方法来进行类加载
    c = findClass(name);
    }
    }
    if (resolve) {
    resolveClass(c);
    }
    return c;
    }</pre>

    这段代码的逻辑清晰易懂:先检查请求加载的类型是否已经被加载过,若没有则调用父加载器的loadClass()方法,若父加载器为空则默认使用启动类加载器作为父加载器。假如父类加载器加载失败,抛出ClassNotFoundException异常的话,才调用自己的findClass()方法尝试进行加载。

    java模块化(jdk9新特性,暂时不清楚)

    在JDK 9中引入的Java模块化系统(Java Platform Module System,JPMS)是对Java技术的一次重要升级,为了能够实现模块化的关键目标——可配置的封装隔离机制,Java虚拟机对类加载架构也做出了相应的变动调整,才使模块化系统得以顺利地运作。JDK 9的模块不仅仅像之前的JAR包那样只是简单地充当代码的容器,除了代码外,Java的模块定义还包含以下内容:

    • 依赖其他模块的列表。

    • 导出的包列表,即其他模块可以使用的列表。

    • 开放的包列表,即其他模块可反射访问模块的列表。

    • 使用的服务列表。

    • 提供服务的实现列表。

    第十二章java内存模型与线程

    java内存模型

    《Java虚拟机规范》 中曾试图定义一种“Java内存模型” (Java Memory Model,JMM)来屏蔽各种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的内存访问效果。在此之前,主流程序语言(如C和C++等)直接使用物理硬件和操作系统的内存模型。因此,由于不同平台上内存模型的差异,有可能导致程序在一套平台上并发完全正常,而在另外一套平台上并发访问却经常出错,所以在某些场景下必须针对不同的平台来编写程序。

    定义Java内存模型并非一件容易的事情,这个模型必须定义得足够严谨,才能让Java的并发内存访问操作不会产生歧义;但是也必须定义得足够宽松,使得虚拟机的实现能有足够的自由空间去利用硬件的各种特性(寄存器、高速缓存和指令集中某些特有的指令)来获取更好的执行速度。经过长时间的验证和修补,直至JDK 5(实现了JSR-133 [3] )发布后,Java内存模型才终于成熟、完善起来了。

    Java内存模型规定了所有的变量都存储在主内存(Main Memory)中(此处的主内存与介绍物理硬件时提到的主内存名字一样,两者也可以类比,但物理上它仅是虚拟机内存的一部分)。每条线程还有自己的工作内存(Working Memory,可与前面讲的处理器高速缓存类比),线程的工作内存中保存了被该线程使用的变量的主内存副本 [2] ,线程对变量的所有操作(读取、赋值等)都必须在工作内存中进行,而不能直接读写主内存中的数据 [3] 。不同的线程之间也无法直接访问对方工作内存中的变量,线程间变量值的传递均需要通过主内存来完成。

    类声明周期.png
    内存间交互操作(详细内容阅读书籍12.3.2章节)

    内存交互操作有8种,虚拟机实现必须保证每一个操作都是原子的,不可在分的(对于double和long类型的变量来说,load、store、read和write操作在某些平台上允许例外)

      • lock (锁定):作用于主内存的变量,把一个变量标识为线程独占状态

      • unlock (解锁):作用于主内存的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定

      • read (读取):作用于主内存变量,它把一个变量的值从主内存传输到线程的工作内存中,以便随后的load动作使用

      • load (载入):作用于工作内存的变量,它把read操作从主存中变量放入工作内存中

      • use (使用):作用于工作内存中的变量,它把工作内存中的变量传输给执行引擎,每当虚拟机遇到一个需要使用到变量的值,就会使用到这个指令

      • assign (赋值):作用于工作内存中的变量,它把一个从执行引擎中接受到的值放入工作内存的变量副本中

      • store (存储):作用于主内存中的变量,它把一个从工作内存中一个变量的值传送到主内存中,以便后续的write使用

      • write  (写入):作用于主内存中的变量,它把store操作从工作内存中得到的变量的值放入主内存的变量中

    JMM对这八种指令的使用,制定了如下规则:

      • 不允许read和load、store和write操作之一单独出现。即使用了read必须load,使用了store必须write

      • 不允许线程丢弃他最近的assign操作,即工作变量的数据改变了之后,必须告知主存

      • 不允许一个线程将没有assign的数据从工作内存同步回主内存

      • 一个新的变量必须在主内存中诞生,不允许工作内存直接使用一个未被初始化的变量。就是怼变量实施use、store操作之前,必须经过assign和load操作

      • 一个变量同一时间只有一个线程能对其进行lock。多次lock后,必须执行相同次数的unlock才能解锁

      • 如果对一个变量进行lock操作,会清空所有工作内存中此变量的值,在执行引擎使用这个变量前,必须重新load或assign操作初始化变量的值

      • 如果一个变量没有被lock,就不能对其进行unlock操作。也不能unlock一个被其他线程锁住的变量

      • 对一个变量进行unlock操作之前,必须把此变量同步回主内存

    JMM对这八种操作规则和对volatile的一些特殊规则就能确定哪里操作是线程安全,哪些操作是线程不安全的了。但是这些规则实在复杂,很难在实践中直接分析。所以一般我们也不会通过上述规则进行分析。更多的时候,使用java的happen-before规则来进行分析。

    Java内存模型是围绕着在并发过程中如何处理原子性、可见性和有序性这三个特征来建立的

    1.原子性(Atomicity) 由Java内存模型来直接保证的原子性变量操作包括read、load、assign、use、store和write这六个,我们大致可以认为,基本数据类型的访问、读写都是具备原子性的(例外就是long和double的非原子性协定,读者只要知道这件事情就可以了,无须太过在意这些几乎不会发生的例外情况)。

    如果应用场景需要一个更大范围的原子性保证(经常会遇到),Java内存模型还提供了lock和unlock操作来满足这种需求,尽管虚拟机未把lock和unlock操作直接开放给用户使用,但是却提供了更高层次的字节码指令monitorenter和monitorexit来隐式地使用这两个操作。这两个字节码指令反映到Java代码中就是同步块——synchronized关键字,因此在synchronized块之间的操作也具备原子性。

    2.可见性(Visibility) 可见性就是指当一个线程修改了共享变量的值时,其他线程能够立即得知这个修改。上文在讲解volatile变量的时候我们已详细讨论过这一点。Java内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值这种依赖主内存作为传递媒介的方式来实现可见性的,无论是普通变量还是volatile变量都是如此。普通变量与volatile变量的区别是,volatile的特殊规则保证了新值能立即同步到主内存,以及每次使用前立即从主内存刷新。因此我们可以说volatile保证了多线程操作时变量的可见性,而普通变量则不能保证这一点。

    3.有序性(Ordering) Java内存模型的有序性在前面讲解volatile时也比较详细地讨论过了,Java程序中天然的有序性可以总结为一句话:如果在本线程内观察,所有的操作都是有序的;如果在一个线程中观察另一个线程,所有的操作都是无序的。前半句是指“线程内似表现为串行的语义”(Within-Thread As-If-SerialSemantics),后半句是指“指令重排序”现象和“工作内存与主内存同步延迟”现象。

    Java语言提供了volatile和synchronized两个关键字来保证线程之间操作的有序性,volatile关键字本身就包含了禁止指令重排序的语义,而synchronized则是由“一个变量在同一个时刻只允许一条线程对其进行lock操作”这条规则获得的,这个规则决定了持有同一个锁的两个同步块只能串行地进入。

    java与线程

    线程的实现

    主流的操作系统都提供了线程实现,Java语言则提供了在不同硬件和操作系统平台下对线程操作的统一处理,每个已经调用过start()方法且还未结束的java.lang.Thread类的实例就代表着一个线程。

    实现线程主要有三种方式:使用内核线程实现(1:1实现),使用用户线程实现(1:N实现),使用用户线程加轻量级进程混合实现(N:M实现)。

    1.内核线程实现

    使用内核线程实现的方式也被称为1:1实现。内核线程(Kernel-Level Thread,KLT)就是直接由操作系统内核(Kernel,下称内核)支持的线程,这种线程由内核来完成线程切换,内核通过操纵调度器(Scheduler)对线程进行调度,并负责将线程的任务映射到各个处理器上。每个内核线程可以视为内核的一个分身,这样操作系统就有能力同时处理多件事情,支持多线程的内核就称为多线程内核(Multi-Threads Kernel)。

    程序一般不会直接使用内核线程,而是使用内核线程的一种高级接口——轻量级进程(LightWeight Process,LWP),轻量级进程就是我们通常意义上所讲的线程,由于每个轻量级进程都由一个内核线程支持,因此只有先支持内核线程,才能有轻量级进程。这种轻量级进程与内核线程之间1:1的关系称为一对一的线程模型。

    2.用户线程实现

    使用用户线程实现的方式被称为1:N实现。广义上来讲,一个线程只要不是内核线程,都可以认为是用户线程(User Thread,UT)的一种,因此从这个定义上看,轻量级进程也属于用户线程,但轻量级进程的实现始终是建立在内核之上的,许多操作都要进行系统调用,因此效率会受到限制,并不具备通常意义上的用户线程的优点。

    而狭义上的用户线程指的是完全建立在用户空间的线程库上,系统内核不能感知到用户线程的存在及如何实现的。用户线程的建立、同步、销毁和调度完全在用户态中完成,不需要内核的帮助。如果程序实现得当,这种线程不需要切换到内核态,因此操作可以是非常快速且低消耗的,也能够支持规模更大的线程数量,部分高性能数据库中的多线程就是由用户线程实现的。这种进程与用户线程之间1:N的关系称为一对多的线程模型。

    用户线程的优势在于不需要系统内核支援,劣势也在于没有系统内核的支援,所有的线程操作都需要由用户程序自己去处理。

    3.混合实现

    线程除了依赖内核线程实现和完全由用户程序自己实现之外,还有一种将内核线程与用户线程一起使用的实现方式,被称为N:M实现。在这种混合实现下,既存在用户线程,也存在轻量级进程。用户线程还是完全建立在用户空间中,因此用户线程的创建、切换、析构等操作依然廉价,并且可以支持大规模的用户线程并发。而操作系统支持的轻量级进程则作为用户线程和内核线程之间的桥梁,这样可以使用内核提供的线程调度功能及处理器映射,并且用户线程的系统调用要通过轻量级进程来完成,这大大降低了整个进程被完全阻塞的风险。在这种混合模式中,用户线程与轻量级进程的数量比是不定的,是N:M的关系。

    4.Java线程的实现

    Java线程如何实现并不受Java虚拟机规范的约束,这是一个与具体虚拟机相关的话题。Java线程在早期的Classic虚拟机上(JDK 1.2以前),是基于一种被称为“绿色线程”(Green Threads)的用户线程实现的,但从JDK 1.3起,“主流”平台上的“主流”商用Java虚拟机的线程模型普遍都被替换为基于操作系统原生线程模型来实现,即采用1:1的线程模型。

    Java线程调度

    线程调度是指系统为线程分配处理器使用权的过程,调度主要方式有两种,分别是协同式(Cooperative Threads-Scheduling)线程调度和抢占式(Preemptive Threads-Scheduling)线程调度。

    协同式调度

    如果使用协同式调度的多线程系统,线程的执行时间由线程本身来控制,线程把自己的工作执行完了之后,要主动通知系统切换到另外一个线程上去。协同式多线程的最大好处是实现简单,而且由于线程要把自己的事情干完后才会进行线程切换,切换操作对线程自己是可知的,所以一般没有什么线程同步的问题。

    它的坏处也很明显:线程执行时间不可控制,甚至如果一个线程的代码编写有问题,一直不告知系统进行线程切换,那么程序就会一直阻塞在。

    抢占式调度

    如果使用抢占式调度的多线程系统,那么每个线程将由系统来分配执行时间,线程的切换不由线程本身来决定。譬如在Java中,有Thread::yield()方法可以主动让出执行时间,但是如果想要主动获取执行时间,线程本身是没有什么办法的。在这种实现线程调度的方式下,线程的执行时间是系统可控的,也不会有一个线程导致整个进程甚至整个系统阻塞的问题。Java使用的线程调度方式就是抢占式调度。与前面所说的Windows 3.x的例子相对,在Windows 9x/NT内核中就是使用抢占式来实现多进程的,当一个进程出了问题,我们还可以使用任务管理器把这个进程杀掉,而不至于导致系统崩溃。

    • 新建(New):创建后尚未启动的线程处于这种状态。

    • 运行(Runnable):包括操作系统线程状态中的Running和Ready,也就是处于此状态的线程有可能正在执行,也有可能正在等待着操作系统为它分配执行时间。

    • 无限期等待(Waiting):处于这种状态的线程不会被分配处理器执行时间,它们要等待被其他线程显式唤醒。以下方法会让线程陷入无限期的等待状态: ■没有设置Timeout参数的Object::wait()方法; ■没有设置Timeout参数的Thread::join()方法; ■LockSupport::park()方法。

    • 限期等待(Timed Waiting):处于这种状态的线程也不会被分配处理器执行时间,不过无须等待被其他线程显式唤醒,在一定时间之后它们会由系统自动唤醒。以下方法会让线程进入限期等待状态: Thread::sleep()方法; ■设置了Timeout参数的Object::wait()方法; ■设置了Timeout参数的Thread::join()方法; ■LockSupport::parkNanos()方法; ■LockSupport::parkUntil()方法。

    • 阻塞(Blocked):线程被阻塞了,“阻塞状态”与“等待状态”的区别是“阻塞状态”在等待着获取到一个排它锁,这个事件将在另外一个线程放弃这个锁的时候发生;而“等待状态”则是在等待一段时间,或者唤醒动作的发生。在程序等待进入同步区域的时候,线程将进入这种状态。

    • 结束(Terminated):已终止线程的线程状态,线程已经结束执行。

    Java与协程

    为什么内核线程调度切换起来成本就要更高?

    内核线程的调度成本主要来自于用户态与核心态之间的状态转换,而这两种状态转换的开销主要来自于响应中断、保护和恢复执行现场的成本。

    如果说内核线程的切换开销是来自于保护和恢复现场的成本,那如果改为采用用户线程,这部分开销就能够省略掉吗?答案是“不能”。但是,一旦把保护、恢复现场及调度的工作从操作系统交到程序员手上,那我们就可以打开脑洞,通过玩出很多新的花样来缩减这些开销。

    协程名字的由来

    由于最初多数的用户线程是被设计成协同式调度(Cooperative Scheduling)的,所以它有了一个别名——“协程”(Coroutine)又由于这时候的协程会完整地做调用栈的保护、恢复工作,所以今天也被称为“有栈协程”(Stackfull Coroutine),起这样的名字是为了便于跟后来的“无栈协程”(Stackless Coroutine)区分开。无栈协程不是本节的主角,不过还是可以简单提一下它的典型应用,即各种语言中的await、async、yield这类关键字。无栈协程本质上是一种有限状态机,状态保存在闭包里,自然比有栈协程恢复调用栈要轻量得多,但功能也相对更有限。

    协程优点和缺点

    协程的主要优势是轻量,无论是有栈协程还是无栈协程,都要比传统内核线程要轻量得多。

    协程当然也有它的局限,需要在应用层面实现的内容(调用栈、调度器这些)特别多。并且具有协同式调度的问题存在。(可能一直阻塞不继续运行)

    相关文章

      网友评论

          本文标题:深入理解Java虚拟机第三版学习笔记

          本文链接:https://www.haomeiwen.com/subject/knrkqltx.html