美文网首页机器学习读书笔记
4.4MNIST手写体数字图片识别

4.4MNIST手写体数字图片识别

作者: idatadesign | 来源:发表于2018-03-12 20:21 被阅读194次
    • 下载数据。
      每个手写体数字图像在两份文件中都被首尾拼接为一个28*28=784维的像素向量,而且每个像素都使用【0,1】之间的灰度值来显示手写笔画的明暗程度。

    • 搭建模型。
      我们将采用多种基于skflow工具包的模型完成大规模手写体数字图片识别的任务。这些模型包括:线性回归器、全连接并包含三个隐层的深度神经网络(DNN)以及一个较复杂但是性能强大的卷积神经网络(CNN)。

    import pandas as pd
    
    train=pd.read_csv('/Users/daqi/Documents/ipython/test/MNIST/train.csv')
    #查验训练样本数量为42000条;数据维度为785。
    train.shape
    

    (42000, 785)

    test=pd.read_csv('/Users/daqi/Documents/ipython/test/MNIST/test.csv')
    #查验训练样本数量为28000条;数据维度为784。
    test.shape
    

    (28000, 784)

    #将训练集中的数据特征与对应标记分离
    y_train=train['label']
    X_train=train.drop('label',1)
    
    #准备测试特征
    X_test=test
    
    import tensorflow as tf
    import skflow
    
    #使用skflow中已经封装好的基于tensorflow搭建的线性分类器TensorFlowLinearClassifier进行学习预测
    classifier=skflow.TensorFlowLinearClassifier(n_classes=10,batch_size=100,steps=1000,learning_rate=0.01)
    
    classifier.fit(X_train,y_train)
    

    Step #99, avg. train loss: 7.92963
    Step #199, avg. train loss: 3.11331
    Step #299, avg. train loss: 2.59313
    Step #399, avg. train loss: 2.20776
    Step #500, epoch #1, avg. train loss: 1.75313
    Step #600, epoch #1, avg. train loss: 1.65065
    Step #700, epoch #1, avg. train loss: 1.63542
    Step #800, epoch #1, avg. train loss: 1.48731
    Step #900, epoch #2, avg. train loss: 1.23449
    Step #1000, epoch #2, avg. train loss: 1.27328
    Out[12]:
    TensorFlowLinearClassifier(batch_size=100, class_weight=None,
    clip_gradients=5.0, config=None, continue_training=False,
    learning_rate=0.01, n_classes=10, optimizer='Adagrad',
    steps=1000, verbose=1)

    linear_y_predict=classifier.predict(X_test)
    
    linear_submission=pd.DataFrame({'ImageId':range(1,28001),'Label':linear_y_predict})
    linear_submission.to_csv('/Users/daqi/Documents/ipython/test/MNIST/linear_submission.csv')
    
    #使用skflow中已经封装好的基于tensorflow搭建的全连接深度神经网络TensorFlowDNNClassifier进行学习预测。
    classifier=skflow.TensorFlowDNNClassifier(hidden_units=[200,50,10],n_classes=10,steps=5000,learning_rate=0.01,batch_size=50)
    classifier.fit(X_train,y_train)
    

    Step #4000, epoch #4, avg. train loss: 1.14965
    Step #4100, epoch #4, avg. train loss: 1.12858
    Step #4200, epoch #5, avg. train loss: 1.13715
    Step #4300, epoch #5, avg. train loss: 1.05097
    Step #4400, epoch #5, avg. train loss: 1.04512
    Step #4500, epoch #5, avg. train loss: 1.02332
    Step #4600, epoch #5, avg. train loss: 0.99978
    Step #4700, epoch #5, avg. train loss: 0.98281
    Step #4800, epoch #5, avg. train loss: 0.96837
    Step #4900, epoch #5, avg. train loss: 0.95128
    Step #5000, epoch #5, avg. train loss: 0.96353
    Out[23]:
    TensorFlowDNNClassifier(batch_size=50, class_weight=None, clip_gradients=5.0,
    config=None, continue_training=False, dropout=None,
    hidden_units=[200, 50, 10], learning_rate=0.01, n_classes=10,
    optimizer='Adagrad', steps=5000, verbose=1)

    dnn_y_predict=classifier.predict(X_test)
    
    dnn_submission=pd.DataFrame({'ImageId':range(1,28001),'Label':dnn_y_predict})
    dnn_submission.to_csv('/Users/daqi/Documents/ipython/test/MNIST/dnn_submission.csv',index=False)
    
    #使用Tensorflow中的算子自行搭建更为复杂的卷积神经网络,并使用skflow的程序接口从事MNIST数据的学习与预测。
    def max_pool_2x2(tensor_in):
        return tf.nn.max_pool(tensor_in,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
    
    def conv_model(X,y):
        X=tf.reshape(X,[-1,28,28,1])
        with tf.variable_scope('conv_layer1'):
            h_conv1=skflow.ops.conv2d(X,n_filters=32,filter_shape=[5,5],bias=True,activation=tf.nn.relu)
            h_pool1=max_pool_2x2(h_conv1)
        with tf.variable_scope('conv_layer2'):
            h_conv2=skflow.ops.conv2d(h_pool1,n_filters=64,filter_shape=[5,5],bias=True,activation=tf.nn.relu)
            h_pool2=max_pool_2x2(h_conv2)
            h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])
        h_fcl=skflow.ops.dnn(h_pool2_flat,[1024],activation=tf.nn.relu,dropout=0.5)
        return skflow.models.logistic_regression(h_fcl,y)
    
    classifier=skflow.TensorFlowEstimator(model_fn=conv_model,n_classes=10,batch_size=100,steps=20000,learning_rate=0.001)
    
    classifier.fit(X_train,y_train)
    

    Step #19000, epoch #45, avg. train loss: 0.01151
    Step #19100, epoch #45, avg. train loss: 0.01212
    Step #19200, epoch #45, avg. train loss: 0.01072
    Step #19300, epoch #45, avg. train loss: 0.01236
    Step #19400, epoch #46, avg. train loss: 0.01132
    Step #19500, epoch #46, avg. train loss: 0.01367
    Step #19600, epoch #46, avg. train loss: 0.01267
    Step #19700, epoch #46, avg. train loss: 0.00997
    Step #19800, epoch #47, avg. train loss: 0.01001
    Step #19900, epoch #47, avg. train loss: 0.01003
    Step #20000, epoch #47, avg. train loss: 0.00917
    Out[51]:
    TensorFlowEstimator(batch_size=100, class_weight=None, clip_gradients=5.0,
    config=None, continue_training=False, learning_rate=0.001,
    model_fn=<function conv_model at 0x11ef26bf8>, n_classes=10,
    optimizer='Adagrad', steps=20000, verbose=1)

    #这里务必请读者朋友在实战中注意,不要将所有的测试样本交给模型进行预测。由于Tensorflow会同时对所有测试样本进行矩阵计算,一次对28000个测试图片进行计算会消耗大量的内存和计算资源。这里所采取的是逐批次地对样本进行预测,最后拼接全部预测结果。
    conv_y_predict=[]
    import numpy as np
    for i in np.arange(100,28001,100):
        conv_y_predict=np.append(conv_y_predict,classifier.predict(X_test[i-100:i]))
    conv_submission=pd.DataFrame({'ImageId':range(1,28001),'Label':np.int32(conv_y_predict)})
    conv_submission.to_csv('/Users/daqi/Documents/ipython/test/MNIST/conv_submission.csv',index=False)
    

    相关文章

      网友评论

        本文标题:4.4MNIST手写体数字图片识别

        本文链接:https://www.haomeiwen.com/subject/knywfftx.html