美文网首页
netfilter之nat

netfilter之nat

作者: 分享放大价值 | 来源:发表于2020-07-11 14:48 被阅读0次

    先说一下nat中之前容易忽略的几点总结
    a. original方向报文根据规则做了NAT转换,那么reply方向一定是根据连接跟踪conntrack表项保存的tuple做转换

    NF_INET_PRE_ROUTING的DNAT和NF_INET_POST_ROUTING 
    的SNAT是成对工作的。
    比如在NF_INET_PRE_ROUTING设置了DNAT规则,original方向的
    数据包会在NF_INET_PRE_ROUTING做DNAT,那么reply的数据
    包一定是在NF_INET_POST_ROUTING做SNAT(根据conntrack的
    记录,不是根据规则)。
    相反的,如果在NF_INET_POST_ROUTING设置了SNAT规则,
    original方向的数据包会在NF_INET_POST_ROUTING做SNAT那
    么reply的数据包一定是在NF_INET_PRE_ROUTING做DNAT(根据
    conntrack的记录,并不是根据规则)。
    
    NF_INET_LOCAL_OUT的DNAT和NF_INET_LOCAL_IN的SNAT也是如此。
    

    b. 不管 SNAT 还是 DNAT,original方向的tuple是不变的。

    //SNAT 规则
    iptables -A POSTROUTING -t nat -s 10.10.10.8 -j SNAT --to-source 192.168.10.2
    //SNAT前的tuple
    original tuple:10.10.10.8:2222 -> 192.168.10.4:22
    reply tuple:   192.168.10.4:22 ->10.10.10.8:2222
    //SNAT后的tuple,只有reply的变了
    original tuple:10.10.10.8:2222 -> 192.168.10.4:22
    reply tuple:   192.168.10.4:22 ->192.168.10.2:2222
    
    //DNAT
    iptables -A OUTPUT -t nat -d 192.168.10.4  -j  DNAT --to-destination 10.10.10.12
    //DNAT前的tuple
    original tuple:10.10.10.8:2222 -> 192.168.10.4:22
    reply tuple:   192.168.10.4:22 ->10.10.10.8:2222
    //DNAT后的tuple,只有reply tuple变了
    original tuple:10.10.10.8:2222 -> 192.168.10.4:22
    reply tuple:   10.10.10.12:22 ->10.10.10.8:2222
    

    c. 只有数据流的首包才需要查找NAT规则进行匹配,不管有没有匹配到NAT规则,都会将数据流对应的ct->status的IPS_SRC_NAT_DONE和IPS_DST_NAT_DONE位置1,对于后续数据包,只要判断ct->status的这两位设置了,就可以跳过匹配NAT规则流程。当然对于匹配到NAT规则需要做转换的数据包,其ct->status还会将IPS_SRC_NAT和IPS_DST_NAT位置1。

    d. netfilter OUTPUT链与路由的位置关系
    先查标准路由,再在output链中做DNAT(nf_nat_ipv4_local_fn),再调用ip_route_me_harder重新查找路由,因为目的ip可能已经变了。

    route---->output(DNAT)---->reroute
    

    注册nat hook函数

    module_init(iptable_nat_init);
    static int __init iptable_nat_init(void)
    {
        //注册pernet函数,其init函数会初始化nf_nat_ipv4_table
        register_pernet_subsys(&iptable_nat_net_ops);
    
        //注册nat的hook函数
        nf_register_hooks(nf_nat_ipv4_ops, ARRAY_SIZE(nf_nat_ipv4_ops));
    
        return 0;
    }
    

    在iptable_nat_net_init中,生成默认的四个规则

    static struct pernet_operations iptable_nat_net_ops = {
        .init   = iptable_nat_net_init,
        .exit   = iptable_nat_net_exit,
    };
    
    static const struct xt_table nf_nat_ipv4_table = {
        .name       = "nat",
        .valid_hooks    = (1 << NF_INET_PRE_ROUTING) |
                  (1 << NF_INET_POST_ROUTING) |
                  (1 << NF_INET_LOCAL_OUT) |
                  (1 << NF_INET_LOCAL_IN),
        .me     = THIS_MODULE,
        .af     = NFPROTO_IPV4,
    };
    static int __net_init iptable_nat_net_init(struct net *net)
    {
        struct ipt_replace *repl;
    
        repl = ipt_alloc_initial_table(&nf_nat_ipv4_table);
    
        net->ipv4.nat_table = ipt_register_table(net, &nf_nat_ipv4_table, repl);
        kfree(repl);
        return PTR_ERR_OR_ZERO(net->ipv4.nat_table);
    }
    

    NAT在四个hook点生效,分别对应四条链,每条链默认有一条rule,内存布局如下,初始化时没有用户添加的rule,可暂时忽略图中用户添加的rule部分,所以hook_entry和underflow指向同样的位置。


    image.png

    注册nat的hook函数

    static struct nf_hook_ops nf_nat_ipv4_ops[] __read_mostly = {
        /* Before packet filtering, change destination */
        {
            .hook       = iptable_nat_ipv4_in,
            .owner      = THIS_MODULE,
            .pf     = NFPROTO_IPV4,
            .hooknum    = NF_INET_PRE_ROUTING,
            .priority   = NF_IP_PRI_NAT_DST,
        },
        /* After packet filtering, change source */
        {
            .hook       = iptable_nat_ipv4_out,
            .owner      = THIS_MODULE,
            .pf     = NFPROTO_IPV4,
            .hooknum    = NF_INET_POST_ROUTING,
            .priority   = NF_IP_PRI_NAT_SRC,
        },
        /* Before packet filtering, change destination */
        {
            .hook       = iptable_nat_ipv4_local_fn,
            .owner      = THIS_MODULE,
            .pf     = NFPROTO_IPV4,
            .hooknum    = NF_INET_LOCAL_OUT,
            .priority   = NF_IP_PRI_NAT_DST,
        },
        /* After packet filtering, change source */
        {
            .hook       = iptable_nat_ipv4_fn,
            .owner      = THIS_MODULE,
            .pf     = NFPROTO_IPV4,
            .hooknum    = NF_INET_LOCAL_IN,
            .priority   = NF_IP_PRI_NAT_SRC,
        },
    };
    

    注册的四个hook函数在netfilter中的位置如下


    image.png

    四个hook函数都会调用nf_nat_ipv4_fn,此函数实现了nat的核心功能,对于数据包的ctinfo为IP_CT_RELATED,IP_CT_RELATED_REPLY和IP_CT_NEW状态的查找nat表,因为这些状态表示是数据流的首包,如果查到nat规则,则执行target,将ct reply的tuple根据规则进行修改。在nf_nat_packet中根据tuple信息对报文做nat转换。

    NF_INET_PRE_ROUTING 的dst nat和 NF_INET_POST_ROUTING 的src nat是成对工作的。
    比如在NF_INET_PRE_ROUTING 设置了dst nat规则,reply的数据包一定是在NF_INET_POST_ROUTING 做src nat(根据conntrack的记录,不是根据规则)。
    相反的,如果在NF_INET_POST_ROUTING 设置了src nat规则,那么reply的数据包一定是在NF_INET_PRE_ROUTING 做dst nat(根据conntrack的记录,并不是根据规则)。

    NF_INET_LOCAL_OUT的dst nat和NF_INET_LOCAL_IN的src nat也是成对工作的。

    nat处理流程

    以 iptable_nat_ipv4_out 为例

    static unsigned int iptable_nat_ipv4_out(const struct nf_hook_ops *ops,
                         struct sk_buff *skb,
                         const struct net_device *in,
                         const struct net_device *out,
                         int (*okfn)(struct sk_buff *))
    {
        //iptable_nat_do_chain调用ipt_do_table在net->ipv4.nat_table
        //中匹配规则,并执行SNAT或者DNAT等target
        return nf_nat_ipv4_out(ops, skb, in, out, iptable_nat_do_chain);
    }
    
    //做个报文长度检查后执行核心函数nf_nat_ipv4_fn
    unsigned int
    nf_nat_ipv4_out(const struct nf_hook_ops *ops, struct sk_buff *skb,
            const struct net_device *in, const struct net_device *out,
            unsigned int (*do_chain)(const struct nf_hook_ops *ops,
                          struct sk_buff *skb,
                          const struct net_device *in,
                          const struct net_device *out,
                          struct nf_conn *ct))
    {
        unsigned int ret;
    
        /* root is playing with raw sockets. */
        if (skb->len < sizeof(struct iphdr) ||
            ip_hdrlen(skb) < sizeof(struct iphdr))
            return NF_ACCEPT;
        //nat处理核心函数,看下面的注释
        ret = nf_nat_ipv4_fn(ops, skb, in, out, do_chain);
        ...
        return ret;
    }
    

    ct->status的位IPS_SRC_NAT_DONE和IPS_DST_NAT_DONE用来判断属于此ct的数据包是否经过NAT处理了。经过NAT处理指的是经过匹配NAT规则的流程,但是不一定匹配到NAT规则。对于匹配不到NAT规则的数据流,后续数据包也不需要再查找NAT规则,所以根据IPS_SRC_NAT_DONE和IPS_DST_NAT_DONE这两位是否置1来判断。
    而ct->status的位IPS_SRC_NAT和IPS_DST_NAT不止说明数据流经过NAT规则处理,还说明属于此ct的数据包需要根据NAT规则修改数据包。

    unsigned int
    nf_nat_ipv4_fn(const struct nf_hook_ops *ops, struct sk_buff *skb,
               const struct net_device *in, const struct net_device *out,
               unsigned int (*do_chain)(const struct nf_hook_ops *ops,
                        struct sk_buff *skb,
                        const struct net_device *in,
                        const struct net_device *out,
                        struct nf_conn *ct))
    {
        struct nf_conn *ct;
        enum ip_conntrack_info ctinfo;
        struct nf_conn_nat *nat;
        /* maniptype == SRC for postrouting. */
        //根据hook点判断出需要做SNAT还是DNAT。
        //在NF_INET_POST_ROUTING和NF_INET_LOCAL_IN做SNAT
        //在NF_INET_PRE_ROUTING和NF_INET_LOCAL_OUT做DNAT
        enum nf_nat_manip_type maniptype = HOOK2MANIP(ops->hooknum);
    
        /* We never see fragments: conntrack defrags on pre-routing
         * and local-out, and nf_nat_out protects post-routing.
         */
        NF_CT_ASSERT(!ip_is_fragment(ip_hdr(skb)));
    
        ct = nf_ct_get(skb, &ctinfo);
        /* Can't track?  It's not due to stress, or conntrack would
         * have dropped it.  Hence it's the user's responsibilty to
         * packet filter it out, or implement conntrack/NAT for that
         * protocol. 8) --RR
         */
        if (!ct)
            return NF_ACCEPT;
    
        /* Don't try to NAT if this packet is not conntracked */
        //如果不是track的包不做处理
        if (nf_ct_is_untracked(ct))
            return NF_ACCEPT;
    
        //将nat添加到ct扩展空间
        nat = nf_ct_nat_ext_add(ct);
        if (nat == NULL)
            return NF_ACCEPT;
    
        //根据ctinfo处理
        switch (ctinfo) {
        case IP_CT_RELATED:
        case IP_CT_RELATED_REPLY:
            if (ip_hdr(skb)->protocol == IPPROTO_ICMP) {
                if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
                                   ops->hooknum))
                    return NF_DROP;
                else
                    return NF_ACCEPT;
            }
            /* Fall thru... (Only ICMPs can be IP_CT_IS_REPLY) */
        case IP_CT_NEW:
            /* Seen it before?  This can happen for loopback, retrans,
             * or local packets.
             */
            //如果ct->status的IPS_SRC_NAT_DONE或者
            //IPS_DST_NAT_DONE位没有置1,则说明报文还没有经过nat处理
            if (!nf_nat_initialized(ct, maniptype)) {
                unsigned int ret;
                //do_chain为函数iptable_nat_do_chain,其调用
                //ipt_do_table在net->ipv4.nat_table中匹配规则,并
                //执行snat,dnat等target,核心函数是 
                //nf_nat_setup_info用来对匹配nat规则的数据包执行
                //nat处理,并将ct->status的IPS_SRC_NAT_DONE
                //或者IPS_DST_NAT_DONE位置1,如果确实需要修     
                //改数据包,则将ct->status的IPS_DST_NAT或者
                //IPS_SRC_NAT位置1
                ret = do_chain(ops, skb, in, out, ct);
                if (ret != NF_ACCEPT)
                    return ret;
    
                //再次判断是否经过nat处理。
                //如果nat target处理过了,则break
                if (nf_nat_initialized(ct, HOOK2MANIP(ops->hooknum)))
                    break;
    
                //对于那些没有匹配到nat规则的数据包,会使用数据
                //包中的ip构造一个range,也执行 
                //nf_nat_setup_info,但是因为range的ip和数据包ip
                //是一样的,所以不会设置IPS_DST_NAT或者
                //IPS_SRC_NAT。
                ret = nf_nat_alloc_null_binding(ct, ops->hooknum);
                if (ret != NF_ACCEPT)
                    return ret;
            } else {
                pr_debug("Already setup manip %s for ct %p\n",
                     maniptype == NF_NAT_MANIP_SRC ? "SRC" : "DST",
                     ct);
                if (nf_nat_oif_changed(ops->hooknum, ctinfo, nat, out))
                    goto oif_changed;
            }
            break;
    
        default:
            /* ESTABLISHED */
            NF_CT_ASSERT(ctinfo == IP_CT_ESTABLISHED ||
                     ctinfo == IP_CT_ESTABLISHED_REPLY);
            if (nf_nat_oif_changed(ops->hooknum, ctinfo, nat, out))
                goto oif_changed;
        }
    
        //不管有没有匹配到nat规则,都会经过此函数处理。
        //根据ct->status的IPS_DST_NAT或者IPS_SRC_NAT,
        //判断需不需要修改数据包。
        return nf_nat_packet(ct, ctinfo, ops->hooknum, skb);
    
    oif_changed:
        nf_ct_kill_acct(ct, ctinfo, skb);
        return NF_DROP;
    }
    

    匹配上nat规则的数据包执行nat target,以snat为例

    static unsigned int
    xt_snat_target_v0(struct sk_buff *skb, const struct xt_action_param *par)
    {
        const struct nf_nat_ipv4_multi_range_compat *mr = par->targinfo;
        struct nf_nat_range range;
        enum ip_conntrack_info ctinfo;
        struct nf_conn *ct;
    
        ct = nf_ct_get(skb, &ctinfo);
        NF_CT_ASSERT(ct != NULL &&
                 (ctinfo == IP_CT_NEW || ctinfo == IP_CT_RELATED ||
                  ctinfo == IP_CT_RELATED_REPLY));
    
        //将nat规则的参数转换到range中
        xt_nat_convert_range(&range, &mr->range[0]);
    
        //根据range修改tuple
        return nf_nat_setup_info(ct, &range, NF_NAT_MANIP_SRC);
    }
    
    //将nat规则的参数转换到range中
    static void xt_nat_convert_range(struct nf_nat_range *dst,
                     const struct nf_nat_ipv4_range *src)
    {
        memset(&dst->min_addr, 0, sizeof(dst->min_addr));
        memset(&dst->max_addr, 0, sizeof(dst->max_addr));
    
        dst->flags   = src->flags;
        dst->min_addr.ip = src->min_ip;
        dst->max_addr.ip = src->max_ip;
        dst->min_proto   = src->min;
        dst->max_proto   = src->max;
    }
    
    //核心函数,根据target的参数获取ip或者port,并修改ct的reply tuple,original tuple是不变的。
    unsigned int
    nf_nat_setup_info(struct nf_conn *ct,
              const struct nf_nat_range *range,
              enum nf_nat_manip_type maniptype)
    {
        struct net *net = nf_ct_net(ct);
        struct nf_conntrack_tuple curr_tuple, new_tuple;
        struct nf_conn_nat *nat;
    
        /* nat helper or nfctnetlink also setup binding */
        nat = nf_ct_nat_ext_add(ct);
        if (nat == NULL)
            return NF_ACCEPT;
    
        NF_CT_ASSERT(maniptype == NF_NAT_MANIP_SRC ||
                 maniptype == NF_NAT_MANIP_DST);
        BUG_ON(nf_nat_initialized(ct, maniptype));
    
        /* What we've got will look like inverse of reply. Normally
         * this is what is in the conntrack, except for prior
         * manipulations (future optimization: if num_manips == 0,
         * orig_tp = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple)
         */
        nf_ct_invert_tuplepr(&curr_tuple,
                     &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
        //根据range获取唯一的tuple
        get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);
    
        //如果新的tuple和当前tuple不一样,说明确实需要做nat
        if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
            struct nf_conntrack_tuple reply;
    
            /* Alter conntrack table so will recognize replies. */
            //获取新tuple的invert tuple
            nf_ct_invert_tuplepr(&reply, &new_tuple);
            //修改ct中reply方向的tuple为invert的tuple。original的tuple是不变的
            nf_conntrack_alter_reply(ct, &reply);
    
            //设置下面的标志位,说明确定需要修改数据包
            /* Non-atomic: we own this at the moment. */
            if (maniptype == NF_NAT_MANIP_SRC)
                ct->status |= IPS_SRC_NAT;
            else
                ct->status |= IPS_DST_NAT;
    
            if (nfct_help(ct))
                nfct_seqadj_ext_add(ct);
        }
    
        if (maniptype == NF_NAT_MANIP_SRC) {
            unsigned int srchash;
    
            srchash = hash_by_src(net, nf_ct_zone(ct),
                          &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
            spin_lock_bh(&nf_nat_lock);
            /* nf_conntrack_alter_reply might re-allocate extension aera */
            nat = nfct_nat(ct);
            nat->ct = ct;
            hlist_add_head_rcu(&nat->bysource,
                       &net->ct.nat_bysource[srchash]);
            spin_unlock_bh(&nf_nat_lock);
        }
    
        /* It's done. */
        if (maniptype == NF_NAT_MANIP_DST)
            ct->status |= IPS_DST_NAT_DONE;
        else
            ct->status |= IPS_SRC_NAT_DONE;
    
        return NF_ACCEPT;
    }
    

    根据ct->status的IPS_DST_NAT或者IPS_SRC_NAT,
    判断需不需要修改数据包。

    /* Do packet manipulations according to nf_nat_setup_info. */
    unsigned int nf_nat_packet(struct nf_conn *ct,
                   enum ip_conntrack_info ctinfo,
                   unsigned int hooknum,
                   struct sk_buff *skb)
    {
        const struct nf_nat_l3proto *l3proto;
        const struct nf_nat_l4proto *l4proto;
        enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
        unsigned long statusbit;
        enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
    
        if (mtype == NF_NAT_MANIP_SRC)
            statusbit = IPS_SRC_NAT;
        else
            statusbit = IPS_DST_NAT;
    
        //original方向的数据包做SNAT,那reply方向的数据包肯定需要
        //做DNAT。比如在original方向会在POSTROUTING hook点对
        //数据包做SNAT,并且设置ct->status为IPS_SRC_NAT,那么
        //reply方向的DNAT应该是在PREROUTING做的,但是不可能
        //在PREROUTING上也设置一条DNAT规则,那DNAT如何做
        //呢?实现方法就是通过这里的两个if。上面的if中,因为hook点
        //是PREROUTING,所以mtype为NF_NAT_MANIP_DST,
        //statusbit为IPS_DST_NAT,又根据下面这个if,如果是reply方
        //向,则对statusbit做异或操作,statusbit结果是
        //IPS_SRC_NAT,ct->status也为IPS_SRC_NAT,这样才会继 
        //续执行,根据mtype NF_NAT_MANIP_DST修改数据包的目的ip。
        /* Invert if this is reply dir. */
        if (dir == IP_CT_DIR_REPLY)
            statusbit ^= IPS_NAT_MASK;
    
        /* Non-atomic: these bits don't change. */
        if (ct->status & statusbit) {
            struct nf_conntrack_tuple target;
            //获取当前方向的反方向的tuple的revert tuple
            /* We are aiming to look like inverse of other direction. */
            nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
    
            l3proto = __nf_nat_l3proto_find(target.src.l3num);
            l4proto = __nf_nat_l4proto_find(target.src.l3num,
                            target.dst.protonum);
            //根据上面获取的tuple和mtype类型修改数据包
            if (!l3proto->manip_pkt(skb, 0, l4proto, &target, mtype))
                return NF_DROP;
        }
        return NF_ACCEPT;
    }
    

    举例说明

    1. snat
      client:10.10.10.8
      server:192.168.10.4
      client访问server时,在client上有一条SNAT规则如下:
      iptables -A POSTROUTING -t nat -s 10.10.10.8 -j SNAT --to-source 192.168.10.2

    在client主机上,数据流如下:10.10.10.8:2222 > 192.168.10.4:22
    经过conntrack模块后,ct的tuple如下:
    original tuple:10.10.10.8:2222 -> 192.168.10.4:22
    reply tuple: 192.168.10.4:22 ->10.10.10.8:2222

    经过POSTROUING的nat hook点时,查找到这条SNAT规则,执行其target,设置ct->status为IPS_SRC_NAT,复制一份original的tuple,将此tuple源ip换成--to-source指定的ip,再将此tuple revert后的值赋值给reply的tuple,此时ct的tuple如下,original的tuple是没变化的,reply的目的ip变成 --to-source指定的ip
    original tuple:10.10.10.8:2222 -> 192.168.10.4:22
    reply tuple: 192.168.10.4:22 ->192.168.10.2:2222

    修改完ct的reply tuple后,在函数nf_nat_packet中,mtype为NF_NAT_MANIP_SRC,所以statusbit = IPS_SRC_NAT,dir为IP_CT_DIR_ORIGINAL,所以ct->status & statusbit 为1,所以需要修改数据包。
    首先获取reply方向tuple的revert tuple:192.168.10.2:2222->192.168.10.4:22,
    调用 manip_pkt 修改数据包,因为mtype为NF_NAT_MANIP_SRC,所以修改源ip为 192.168.10.2

    if (ct->status & statusbit) {
            struct nf_conntrack_tuple target;
    
            /* We are aiming to look like inverse of other direction. */
            nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
    
            l3proto = __nf_nat_l3proto_find(target.src.l3num);
            l4proto = __nf_nat_l4proto_find(target.src.l3num,
                            target.dst.protonum);
            if (!l3proto->manip_pkt(skb, 0, l4proto, &target, mtype))
                return NF_DROP;
        }
    

    所以最后从client发出去的数据流为:192.168.10.2:2222 -> 192.168.10.4:22。

    从server返回的数据流为:192.168.10.4:22 -> 192.168.10.2:2222
    在client上经过conntrack时,可以查找到ct表项,并且为reply方向,所以设置ctinfo = IP_CT_ESTABLISHED_REPLY,并且设置 ct->status 为 IPS_SEEN_REPLY_BIT。
    然后在PREROUTING的nat hook点,此时ctinfo为IP_CT_ESTABLISHED_REPLY,所以不用查找nat表,直接执行nf_nat_packet,
    此函数中,mtype为NF_NAT_MANIP_DST,所以statusbit = IPS_DST_NAT,dir为IP_CT_DIR_REPLY,所以执行 statusbit ^= IPS_NAT_MASK 后 statusbit为IPS_SRC_NAT,所以ct->status & statusbit 为1,所以需要修改数据包。
    首先获取orginal方向tuple的revert tuple:192.168.10.4:22->10.10.10.8:2222,
    调用 manip_pkt 修改数据包,因为mtype为NF_NAT_MANIP_DST,所以修改目的ip为 10.10.10.8.
    最后进入client的数据流为:192.168.10.4:22 -> 10.10.10.8:2222.

    1. dnat
      client:10.10.10.8
      server:192.168.10.4
      client访问server时,在client上有一条DNAT规则如下:
      iptables -A OUTPUT -t nat -d 192.168.10.4 -j DNAT --to-destination 10.10.10.12

    在client主机上,数据流如下:10.10.10.8:2222 > 192.168.10.4:22
    经过conntrack模块后,ct的tuple如下:
    original tuple:10.10.10.8:2222 -> 192.168.10.4:22
    reply tuple: 192.168.10.4:22 ->10.10.10.8:2222

    经过OUTPUT的nat hook点时,查找到这条DNAT规则,执行其target,设置ct->status为IPS_DST_NAT,复制一份original的tuple,将此tuple源ip换成--to-destination指定的ip,再将此tuple revert后的值赋值给reply的tuple,此时ct的tuple如下,original的tuple是没变化的,reply的源ip变成 --to-destination指定的ip
    original tuple:10.10.10.8:2222 -> 192.168.10.4:22
    reply tuple: 10.10.10.12:22 ->10.10.10.8:2222

    修改完ct的reply tuple后,在函数nf_nat_packet中,mtype为NF_NAT_MANIP_DST,所以statusbit = IPS_DST_NAT,dir为IP_CT_DIR_ORIGINAL,statusbit 仍然为IPS_DST_NAT,所以ct->status & statusbit 的结果为1,所以需要修改数据包。
    首先获取reply方向tuple的revert tuple:10.10.10.8:2222->10.10.10.12:22,
    调用 manip_pkt 修改数据包,因为mtype为NF_NAT_MANIP_DST,所以修改目的ip为 10.10.10.12

    if (ct->status & statusbit) {
            struct nf_conntrack_tuple target;
    
            /* We are aiming to look like inverse of other direction. */
            nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
    
            l3proto = __nf_nat_l3proto_find(target.src.l3num);
            l4proto = __nf_nat_l4proto_find(target.src.l3num,
                            target.dst.protonum);
            if (!l3proto->manip_pkt(skb, 0, l4proto, &target, mtype))
                return NF_DROP;
        }
    

    所以最后从client发出去的数据流为:10.10.10.8:2222 -> 10.10.10.12:22。

    从server返回的数据流为:10.10.10.12:22 -> 10.10.10.8:2222
    在client上经过conntrack时,可以查找到ct表项,并且为reply方向,所以设置ctinfo = IP_CT_ESTABLISHED_REPLY,并且设置 ct->status 为 IPS_SEEN_REPLY_BIT。
    然后在INPUT的nat hook点,此时ctinfo为IP_CT_ESTABLISHED_REPLY,所以不用查找nat表,直接执行nf_nat_packet,
    此函数中,mtype为NF_NAT_MANIP_SRC,所以statusbit = IPS_SRC_NAT,dir为IP_CT_DIR_REPLY,所以执行 statusbit ^= IPS_NAT_MASK 后 statusbit为IPS_DST_NAT,所以ct->status & statusbit 为1,所以需要修改数据包。
    首先获取orginal方向tuple的revert tuple:192.168.10.4:22->10.10.10.8:2222,
    调用 manip_pkt 修改数据包,因为mtype为NF_NAT_MANIP_SRC,所以修改目的ip为 192.168.10.4
    最后进入client的数据流为:192.168.10.4:22 -> 10.10.10.8:2222.

    相关文章

      网友评论

          本文标题:netfilter之nat

          本文链接:https://www.haomeiwen.com/subject/kocnqktx.html