在机器学习或者深度学习领域,参数和超参数是一个常见的问题,个人根据经验给出了一个很狭隘的区分这两种参数的方法。
参数parameters:就是模型可以根据数据可以自动学习出的变量,应该就是参数。比如,深度学习的权重,偏差等
超参数hyperparameters:就是用来确定模型的一些参数,超参数不同,模型是不同的(这个模型不同的意思就是有微小的区别,比如假设都是CNN模型,如果层数不同,模型不一样,虽然都是CNN模型哈。),超参数一般就是根据经验确定的变量。在深度学习中,超参数有:学习速率,迭代次数,层数,每层神经元的个数等等。
二者的联系:
当针对特定问题调整机器学习算法时,例如在使用网格搜索或随机搜索时,你将调整模型或命令的超参数,以发现一个可以使模型预测最熟练的模型参数。许多模型中重要的参数无法直接从数据中估计得到。例如,在K近邻分类模型中...这种类型的模型参数被称为调整参数,因为没有可用的分析公式来为其计算一个合适的值。
区分:
模型超参数通常被称为模型参数,这种叫法很容易让人产生误解。解决这个问题的一个很好的经验法则如下:如果你必须手动指定一个“模型参数”,那么它可能就是一个模型超参数。
网友评论