part1_data_discovery
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_auc_score as AUC
from sklearn.metrics import mean_absolute_error
from sklearn.decomposition import PCA
from sklearn.preprocessing import LabelEncoder, LabelBinarizer
from sklearn.cross_validation import cross_val_score
from scipy import stats
import seaborn as sns
from copy import deepcopy
%matplotlib inline
# This may raise an exception in earlier versions of Jupyter
%config InlineBackend.figure_format = 'retina'
在这一部分,我们做一个简短的数据探索,看看我们有什么样的数据集,以及我们是否能找到其中的任何模式。
train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
先来瞅瞅数据长啥样
train.shape
输出
(188318, 132)
188k训练实例,132列 数据量还可以。
print ('First 20 columns:', list(train.columns[:20]))
print ('Last 20 columns:', list(train.columns[-20:]))
输出
First 20 columns: ['id', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9', 'cat10', 'cat11', 'cat12', 'cat13', 'cat14', 'cat15', 'cat16', 'cat17', 'cat18', 'cat19']
Last 20 columns: ['cat112', 'cat113', 'cat114', 'cat115', 'cat116', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13', 'cont14', 'loss']
我们看到,大概有116个种类属性(如它们的名字所示)和14个连续(数字)属性。 此外,还有ID和赔偿。总计为132列。
train.describe()
正如我们看到的,所有的连续的功能已被缩放到[0,1]区间,均值基本为0.5。其实数据已经被预处理了,我们拿到的是特征数据。
查看缺失值
绝大多数情况下,我们都需要对缺失值进行处理
pd.isnull(train).values.any()
输出
False
竟然木有缺失值,可以愉快的玩耍了
Continuous vs caterogical features
Another way to see the division to categorical and continuous features is to run pd.DataFrame.info
method:
train.info()
输出
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 188318 entries, 0 to 188317
Columns: 132 entries, id to loss
dtypes: float64(15), int64(1), object(116)
memory usage: 189.7+ MB
In here, float64(15), int64(1) are our continuous features (the one with int64 is probably id) while object(116) are categorical features. We may confirm this:
cat_features = list(train.select_dtypes(include=['object']).columns)
print "Categorical: {} features".format(len(cat_features))
Continuous: 14 features
cont_features = [cont for cont in list(train.select_dtypes(
include=['float64', 'int64']).columns) if cont not in ['loss', 'id']]
print "Continuous: {} features".format(len(cont_features))
输出
A column of int64: ['id']
类别值中属性的个数
cat_uniques = []
for cat in cat_features:
cat_uniques.append(len(train[cat].unique()))
uniq_values_in_categories = pd.DataFrame.from_items([('cat_name', cat_features), ('unique_values', cat_uniques)])
uniq_values_in_categories.head()
fig, (ax1, ax2) = plt.subplots(1,2)
fig.set_size_inches(16,5)
ax1.hist(uniq_values_in_categories.unique_values, bins=50)
ax1.set_title('Amount of categorical features with X distinct values')
ax1.set_xlabel('Distinct values in a feature')
ax1.set_ylabel('Features')
ax1.annotate('A feature with 326 vals', xy=(322, 2), xytext=(200, 38), arrowprops=dict(facecolor='black'))
ax2.set_xlim(2,30)
ax2.set_title('Zooming in the [0,30] part of left histogram')
ax2.set_xlabel('Distinct values in a feature')
ax2.set_ylabel('Features')
ax2.grid(True)
ax2.hist(uniq_values_in_categories[uniq_values_in_categories.unique_values <= 30].unique_values, bins=30)
ax2.annotate('Binary features', xy=(3, 71), xytext=(7, 71), arrowprops=dict(facecolor='black'))
赔偿值
plt.figure(figsize=(16,8))
plt.plot(train['id'], train['loss'])
plt.title('Loss values per id')
plt.xlabel('id')
plt.ylabel('loss')
plt.legend()
plt.show()
损失值中有几个显著的峰值表示严重事故。这样的数据分布,使得这个功能非常扭曲导致的回归表现不佳。
基本上,偏度度量了实值随机变量的均值分布的不对称性。让我们计算损失的偏度:
stats.mstats.skew(train['loss']).data
#输出 array(3.7949281496777445)
数据确实是倾斜的
对数据进行对数变换通常可以改善倾斜,可以使用 np.log
stats.mstats.skew(np.log(train['loss'])).data
输出
array(0.0929738049841997)
fig, (ax1, ax2) = plt.subplots(1,2)
fig.set_size_inches(16,5)
ax1.hist(train['loss'], bins=50)
ax1.set_title('Train Loss target histogram')
ax1.grid(True)
ax2.hist(np.log(train['loss']), bins=50, color='g')
ax2.set_title('Train Log Loss target histogram')
ax2.grid(True)
plt.show()
连续值特征
One thing we can do is to plot histogram of the numerical features and analyze their distributions:
train[cont_features].hist(bins=50, figsize=(16,12))
特征之间的相关性
plt.subplots(figsize=(16,9))
correlation_mat = train[cont_features].corr()
sns.heatmap(correlation_mat, annot=True)
我们看到几个特征之间有很高的相关性
part2_xgboost
import xgboost as xgb
import pandas as pd
import numpy as np
import pickle
import sys
import matplotlib.pyplot as plt
from sklearn.metrics import mean_absolute_error, make_scorer
from sklearn.preprocessing import StandardScaler
from sklearn.grid_search import GridSearchCV
from scipy.sparse import csr_matrix, hstack
from sklearn.cross_validation import KFold, train_test_split
from xgboost import XGBRegressor
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
# This may raise an exception in earlier versions of Jupyter
%config InlineBackend.figure_format = 'retina'
这部分主要内容就是Xgboost啦
数据预处理
train = pd.read_csv('train.csv')
做对数转换
train['log_loss'] = np.log(train['loss'])
数据分成连续和离散特征
features = [x for x in train.columns if x not in ['id','loss', 'log_loss']]
cat_features = [x for x in train.select_dtypes(
include=['object']).columns if x not in ['id','loss', 'log_loss']]
num_features = [x for x in train.select_dtypes(
exclude=['object']).columns if x not in ['id','loss', 'log_loss']]
print ("Categorical features:", len(cat_features))
print ("Numerical features:", len(num_features))
输出
Categorical features: 116
Numerical features: 14
And use a label encoder for categorical features:
ntrain = train.shape[0]
train_x = train[features]
train_y = train['log_loss']
for c in range(len(cat_features)):
train_x[cat_features[c]] = train_x[cat_features[c]].astype('category').cat.codes
print ("Xtrain:", train_x.shape)
print ("ytrain:", train_y.shape)
输出
Xtrain: (188318, 130)
ytrain: (188318,)
Simple XGBoost Model
首先,我们训练一个基本的xgboost模型,然后进行参数调节通过交叉验证来观察结果的变换,使用平均绝对误差来衡量
mean_absolute_error(np.exp(y), np.exp(yhat))。
xgboost 自定义了一个数据矩阵类 DMatrix,会在训练开始时进行一遍预处理,从而提高之后每次迭代的效率
def xg_eval_mae(yhat, dtrain):
y = dtrain.get_label()
return 'mae', mean_absolute_error(np.exp(y), np.exp(yhat))
Model
dtrain = xgb.DMatrix(train_x, train['log_loss'])
Xgboost参数
- 'booster':'gbtree',
- 'objective': 'multi:softmax', 多分类的问题
- 'num_class':10, 类别数,与 multisoftmax 并用
- 'gamma':损失下降多少才进行分裂
- 'max_depth':12, 构建树的深度,越大越容易过拟合
- 'lambda':2, 控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。
- 'subsample':0.7, 随机采样训练样本
- 'colsample_bytree':0.7, 生成树时进行的列采样
- 'min_child_weight':3, 孩子节点中最小的样本权重和。如果一个叶子节点的样本权重和小于min_child_weight则拆分过程结束
- 'silent':0 ,设置成1则没有运行信息输出,最好是设置为0.
- 'eta': 0.007, 如同学习率
- 'seed':1000,
- 'nthread':7, cpu 线程数
xgb_params = {
'seed': 0,
'eta': 0.1,
'colsample_bytree': 0.5,
'silent': 1,
'subsample': 0.5,
'objective': 'reg:linear',
'max_depth': 5,
'min_child_weight': 3
}
使用交叉验证 xgb.cv
%%time
bst_cv1 = xgb.cv(xgb_params, dtrain, num_boost_round=50, nfold=3, seed=0,
feval=xg_eval_mae, maximize=False, early_stopping_rounds=10)
print ('CV score:', bst_cv1.iloc[-1,:]['test-mae-mean'])
输出
CV score: 1218.92834467
Wall time: 1min 6s
我们得到了第一个基准结果:MAE=1218.9
plt.figure()
bst_cv1[['train-mae-mean', 'test-mae-mean']].plot()
我们的第一个基础模型:
- 没有发生过拟合
- 只建立了50个树模型
%%time
#建立100个树模型
bst_cv2 = xgb.cv(xgb_params, dtrain, num_boost_round=100,
nfold=3, seed=0, feval=xg_eval_mae, maximize=False,
early_stopping_rounds=10)
print ('CV score:', bst_cv2.iloc[-1,:]['test-mae-mean'])
输出
CV score: 1171.13663733
Wall time: 1min 57s
fig, (ax1, ax2) = plt.subplots(1,2)
fig.set_size_inches(16,4)
ax1.set_title('100 rounds of training')
ax1.set_xlabel('Rounds')
ax1.set_ylabel('Loss')
ax1.grid(True)
ax1.plot(bst_cv2[['train-mae-mean', 'test-mae-mean']])
ax1.legend(['Training Loss', 'Test Loss'])
ax2.set_title('60 last rounds of training')
ax2.set_xlabel('Rounds')
ax2.set_ylabel('Loss')
ax2.grid(True)
ax2.plot(bst_cv2.iloc[40:][['train-mae-mean', 'test-mae-mean']])
ax2.legend(['Training Loss', 'Test Loss'])
有那么一丁丁过拟合,现在还没多大事
我们得到了新的纪录 MAE = 1171.77 比第一次的要好 (1218.9). 接下来我们要改变其他参数了。
XGBoost 参数调节
-
Step 1: 选择一组初始参数
-
Step 2: 改变
max_depth
和min_child_weight
. -
Step 3: 调节
gamma
降低模型过拟合风险. -
Step 4: 调节
subsample
和colsample_bytree
改变数据采样策略. -
Step 5: 调节学习率
eta
.
class XGBoostRegressor(object):
def __init__(self, **kwargs):
self.params = kwargs
if 'num_boost_round' in self.params:
self.num_boost_round = self.params['num_boost_round']
self.params.update({'silent': 1, 'objective': 'reg:linear', 'seed': 0})
def fit(self, x_train, y_train):
dtrain = xgb.DMatrix(x_train, y_train)
self.bst = xgb.train(params=self.params, dtrain=dtrain, num_boost_round=self.num_boost_round,
feval=xg_eval_mae, maximize=False)
def predict(self, x_pred):
dpred = xgb.DMatrix(x_pred)
return self.bst.predict(dpred)
def kfold(self, x_train, y_train, nfold=5):
dtrain = xgb.DMatrix(x_train, y_train)
cv_rounds = xgb.cv(params=self.params, dtrain=dtrain, num_boost_round=self.num_boost_round,
nfold=nfold, feval=xg_eval_mae, maximize=False, early_stopping_rounds=10)
return cv_rounds.iloc[-1,:]
def plot_feature_importances(self):
feat_imp = pd.Series(self.bst.get_fscore()).sort_values(ascending=False)
feat_imp.plot(title='Feature Importances')
plt.ylabel('Feature Importance Score')
def get_params(self, deep=True):
return self.params
def set_params(self, **params):
self.params.update(params)
return self
def mae_score(y_true, y_pred):
return mean_absolute_error(np.exp(y_true), np.exp(y_pred))
mae_scorer = make_scorer(mae_score, greater_is_better=False)
bst = XGBoostRegressor(eta=0.1, colsample_bytree=0.5, subsample=0.5,
max_depth=5, min_child_weight=3, num_boost_round=50)
bst.kfold(train_x, train_y, nfold=5)
输出
test-mae-mean 1219.014551
test-mae-std 8.931061
train-mae-mean 1210.682813
train-mae-std 2.798608
Name: 49, dtype: float64
Step 1: 学习率与树个数
Step 2: 树的深度与节点权重
这些参数对xgboost性能影响最大,因此,他们应该调整第一。我们简要地概述它们:
- max_depth: 树的最大深度。增加这个值会使模型更加复杂,也容易出现过拟合,深度3-10是合理的。
- min_child_weight: 正则化参数. 如果树分区中的实例权重小于定义的总和,则停止树构建过程。
xgb_param_grid = {'max_depth': list(range(4,9)), 'min_child_weight': list((1,3,6))}
xgb_param_grid['max_depth']
输出
[4, 5, 6, 7, 8]
%%time
grid = GridSearchCV(XGBoostRegressor(eta=0.1, num_boost_round=50, colsample_bytree=0.5, subsample=0.5),
param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)
grid.fit(train_x, train_y.values)
Wall time: 29min 48s
grid.grid_scores_, grid.best_params_, grid.best_score_
输出
([mean: -1243.19015, std: 6.70264, params: {'max_depth': 4, 'min_child_weight': 1},
mean: -1243.30647, std: 6.82365, params: {'max_depth': 4, 'min_child_weight': 3},
mean: -1243.50752, std: 6.60994, params: {'max_depth': 4, 'min_child_weight': 6},
mean: -1219.60926, std: 7.09979, params: {'max_depth': 5, 'min_child_weight': 1},
mean: -1218.72940, std: 6.82721, params: {'max_depth': 5, 'min_child_weight': 3},
mean: -1219.25033, std: 6.89855, params: {'max_depth': 5, 'min_child_weight': 6},
mean: -1204.68929, std: 6.28730, params: {'max_depth': 6, 'min_child_weight': 1},
mean: -1203.44649, std: 7.19550, params: {'max_depth': 6, 'min_child_weight': 3},
mean: -1203.76522, std: 7.13140, params: {'max_depth': 6, 'min_child_weight': 6},
mean: -1195.35465, std: 6.38664, params: {'max_depth': 7, 'min_child_weight': 1},
mean: -1194.02729, std: 6.69778, params: {'max_depth': 7, 'min_child_weight': 3},
mean: -1193.51933, std: 6.73645, params: {'max_depth': 7, 'min_child_weight': 6},
mean: -1189.10977, std: 6.18540, params: {'max_depth': 8, 'min_child_weight': 1},
mean: -1188.21520, std: 6.15132, params: {'max_depth': 8, 'min_child_weight': 3},
mean: -1187.95975, std: 6.71340, params: {'max_depth': 8, 'min_child_weight': 6}],
{'max_depth': 8, 'min_child_weight': 6},
-1187.9597499123447)
网格搜索发现的最佳结果:
{'max_depth': 8, 'min_child_weight': 6},
-1187.9597499123447)
设置成负的值是因为要找大的值
def convert_grid_scores(scores):
_params = []
_params_mae = []
for i in scores:
_params.append(i[0].values())
_params_mae.append(i[1])
params = np.array(_params)
grid_res = np.column_stack((_params,_params_mae))
return [grid_res[:,i] for i in range(grid_res.shape[1])]
_,scores = convert_grid_scores(grid.grid_scores_)
scores = scores.reshape(5,3)
plt.figure(figsize=(10,5))
cp = plt.contourf(xgb_param_grid['min_child_weight'], xgb_param_grid['max_depth'], scores, cmap='BrBG')
plt.colorbar(cp)
plt.title('Depth / min_child_weight optimization')
plt.annotate('We use this', xy=(5.95, 7.95), xytext=(4, 7.5), arrowprops=dict(facecolor='white'), color='white')
plt.annotate('Good for depth=7', xy=(5.98, 7.05),
xytext=(4, 6.5), arrowprops=dict(facecolor='white'), color='white')
plt.xlabel('min_child_weight')
plt.ylabel('max_depth')
plt.grid(True)
plt.show()
我们看到,从网格搜索的结果,分数的提高主要是基于max_depth增加. min_child_weight稍有影响的成绩,但是,我们看到,min_child_weight = 6会更好一些。
Step 3: 调节 gamma去降低过拟合风险
%%time
xgb_param_grid = {'gamma':[ 0.1 * i for i in range(0,5)]}
grid = GridSearchCV(XGBoostRegressor(eta=0.1, num_boost_round=50, max_depth=8, min_child_weight=6,
colsample_bytree=0.5, subsample=0.5),
param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)
grid.fit(train_x, train_y.values)
Wall time: 13min 45s
grid.grid_scores_, grid.best_params_, grid.best_score_
输出
([mean: -1187.95975, std: 6.71340, params: {'gamma': 0.0},
mean: -1187.67788, std: 6.44332, params: {'gamma': 0.1},
mean: -1187.66616, std: 6.75004, params: {'gamma': 0.2},
mean: -1187.21835, std: 7.06771, params: {'gamma': 0.30000000000000004},
mean: -1188.35004, std: 6.50057, params: {'gamma': 0.4}],
{'gamma': 0.30000000000000004},
-1187.2183540791846)
我们选择使用偏小一些的 gamma.
Step 4: 调节样本采样方式 subsample 和 colsample_bytree
%%time
xgb_param_grid = {'subsample':[ 0.1 * i for i in range(6,9)],
'colsample_bytree':[ 0.1 * i for i in range(6,9)]}
grid = GridSearchCV(XGBoostRegressor(eta=0.1, gamma=0.2, num_boost_round=50, max_depth=8, min_child_weight=6),
param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)
grid.fit(train_x, train_y.values)
Wall time: 28min 26s
grid.grid_scores_, grid.best_params_, grid.best_score_
输出
([mean: -1185.67108, std: 5.40097, params: {'colsample_bytree': 0.6000000000000001, 'subsample': 0.6000000000000001},
mean: -1184.90641, std: 5.61239, params: {'colsample_bytree': 0.6000000000000001, 'subsample': 0.7000000000000001},
mean: -1183.73767, std: 6.15639, params: {'colsample_bytree': 0.6000000000000001, 'subsample': 0.8},
mean: -1185.09329, std: 7.04215, params: {'colsample_bytree': 0.7000000000000001, 'subsample': 0.6000000000000001},
mean: -1184.36149, std: 5.71298, params: {'colsample_bytree': 0.7000000000000001, 'subsample': 0.7000000000000001},
mean: -1183.83446, std: 6.24654, params: {'colsample_bytree': 0.7000000000000001, 'subsample': 0.8},
mean: -1184.43055, std: 6.68009, params: {'colsample_bytree': 0.8, 'subsample': 0.6000000000000001},
mean: -1183.33878, std: 5.74989, params: {'colsample_bytree': 0.8, 'subsample': 0.7000000000000001},
mean: -1182.93099, std: 5.75849, params: {'colsample_bytree': 0.8, 'subsample': 0.8}],
{'colsample_bytree': 0.8, 'subsample': 0.8},
-1182.9309918891634)
_, scores = convert_grid_scores(grid.grid_scores_)
scores = scores.reshape(3,3)
plt.figure(figsize=(10,5))
cp = plt.contourf(xgb_param_grid['subsample'], xgb_param_grid['colsample_bytree'], scores, cmap='BrBG')
plt.colorbar(cp)
plt.title('Subsampling params tuning')
plt.annotate('Optimum', xy=(0.895, 0.6), xytext=(0.8, 0.695), arrowprops=dict(facecolor='black'))
plt.xlabel('subsample')
plt.ylabel('colsample_bytree')
plt.grid(True)
plt.show()
在当前的预训练模式的具体案例,我得到了下面的结果:
`{'colsample_bytree': 0.8, 'subsample': 0.8}, -1182.9309918891634)
Step 5: 减小学习率并增大树个数
参数优化的最后一步是降低学习速度,同时增加更多的估计量
First, we plot different learning rates for a simpler model (50 trees):
%%time
xgb_param_grid = {'eta':[0.5,0.4,0.3,0.2,0.1,0.075,0.05,0.04,0.03]}
grid = GridSearchCV(XGBoostRegressor(num_boost_round=50, gamma=0.2, max_depth=8, min_child_weight=6,
colsample_bytree=0.6, subsample=0.9),
param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)
grid.fit(train_x, train_y.values)
CPU times: user 6.69 ms, sys: 0 ns, total: 6.69 ms
Wall time: 6.55 ms
grid.grid_scores_, grid.best_params_, grid.best_score_
输出
([mean: -1205.85372, std: 3.46146, params: {'eta': 0.5},
mean: -1185.32847, std: 4.87321, params: {'eta': 0.4},
mean: -1170.00284, std: 4.76399, params: {'eta': 0.3},
mean: -1160.97363, std: 6.05830, params: {'eta': 0.2},
mean: -1183.66720, std: 6.69439, params: {'eta': 0.1},
mean: -1266.12628, std: 7.26130, params: {'eta': 0.075},
mean: -1709.15130, std: 8.19994, params: {'eta': 0.05},
mean: -2104.42708, std: 8.02827, params: {'eta': 0.04},
mean: -2545.97334, std: 7.76440, params: {'eta': 0.03}],
{'eta': 0.2},
-1160.9736284869114)
eta, y = convert_grid_scores(grid.grid_scores_)
plt.figure(figsize=(10,4))
plt.title('MAE and ETA, 50 trees')
plt.xlabel('eta')
plt.ylabel('score')
plt.plot(eta, -y)
plt.grid(True)
plt.show()
{'eta': 0.2}, -1160.9736284869114 是目前最好的结果
现在我们把树的个数增加到100
xgb_param_grid = {'eta':[0.5,0.4,0.3,0.2,0.1,0.075,0.05,0.04,0.03]}
grid = GridSearchCV(XGBoostRegressor(num_boost_round=100, gamma=0.2, max_depth=8, min_child_weight=6,
colsample_bytree=0.6, subsample=0.9),
param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)
grid.fit(train_x, train_y.values)
CPU times: user 11.5 ms, sys: 0 ns, total: 11.5 ms
Wall time: 11.4 ms
grid.grid_scores_, grid.best_params_, grid.best_score_
输出
([mean: -1231.04517, std: 5.41136, params: {'eta': 0.5},
mean: -1201.31398, std: 4.75456, params: {'eta': 0.4},
mean: -1177.86344, std: 3.67324, params: {'eta': 0.3},
mean: -1160.48853, std: 5.65336, params: {'eta': 0.2},
mean: -1152.24715, std: 5.85286, params: {'eta': 0.1},
mean: -1156.75829, std: 5.30250, params: {'eta': 0.075},
mean: -1184.88913, std: 6.08852, params: {'eta': 0.05},
mean: -1243.60808, std: 7.40326, params: {'eta': 0.04},
mean: -1467.04736, std: 8.70704, params: {'eta': 0.03}],
{'eta': 0.1},
-1152.2471498726127)
eta, y = convert_grid_scores(grid.grid_scores_)
plt.figure(figsize=(10,4))
plt.title('MAE and ETA, 100 trees')
plt.xlabel('eta')
plt.ylabel('score')
plt.plot(eta, -y)
plt.grid(True)
plt.show()
学习率低一些的效果更好
%%time
xgb_param_grid = {'eta':[0.09,0.08,0.07,0.06,0.05,0.04]}
grid = GridSearchCV(XGBoostRegressor(num_boost_round=200, gamma=0.2, max_depth=8, min_child_weight=6,
colsample_bytree=0.6, subsample=0.9),
param_grid=xgb_param_grid, cv=5, scoring=mae_scorer)
grid.fit(train_x, train_y.values)
输出
CPU times: user 21.9 ms, sys: 34 µs, total: 22 ms
Wall time: 22 ms
在增加树的个数呢?
grid.grid_scores_, grid.best_params_, grid.best_score_
输出
([mean: -1148.37246, std: 6.51203, params: {'eta': 0.09},
mean: -1146.67343, std: 6.13261, params: {'eta': 0.08},
mean: -1145.92359, std: 5.68531, params: {'eta': 0.07},
mean: -1147.44050, std: 6.33336, params: {'eta': 0.06},
mean: -1147.98062, std: 6.39481, params: {'eta': 0.05},
mean: -1153.17886, std: 5.74059, params: {'eta': 0.04}],
{'eta': 0.07},
-1145.9235944370419)
eta, y = convert_grid_scores(grid.grid_scores_)
plt.figure(figsize=(10,4))
plt.title('MAE and ETA, 200 trees')
plt.xlabel('eta')
plt.ylabel('score')
plt.plot(eta, -y)
plt.grid(True)
plt.show()
%%time
# Final XGBoost model
bst = XGBoostRegressor(num_boost_round=200, eta=0.07, gamma=0.2, max_depth=8, min_child_weight=6,
colsample_bytree=0.6, subsample=0.9)
cv = bst.kfold(train_x, train_y, nfold=5)
输出
CPU times: user 1.26 ms, sys: 22 µs, total: 1.28 ms
Wall time: 1.07 ms
cv
输出
test-mae-mean 1146.997852
test-mae-std 9.541592
train-mae-mean 1036.557251
train-mae-std 0.974437
Name: 199, dtype: float64
网友评论