美文网首页计算机视觉目标检测
【转】Object Detection博客(下)

【转】Object Detection博客(下)

作者: Kwan_SS | 来源:发表于2017-07-09 20:57 被阅读624次

    本文转载自:https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html#

    (接Object Detection博客(上))

    Traffic-Sign Detection
    Traffic-Sign Detection and Classification in the Wild
    project page(code+dataset): http://cg.cs.tsinghua.edu.cn/traffic-sign/
    paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Traffic-Sign_Detection_and_CVPR_2016_paper.pdf
    code & model: http://cg.cs.tsinghua.edu.cn/traffic-sign/data_model_code/newdata0411.zip

    Detecting Small Signs from Large Images
    intro: IEEE Conference on Information Reuse and Integration (IRI) 2017 oral
    arxiv: https://arxiv.org/abs/1706.08574

    Boundary / Edge / Contour Detection
    Holistically-Nested Edge Detection


    intro: ICCV 2015, Marr Prize
    paper: http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Xie_Holistically-Nested_Edge_Detection_ICCV_2015_paper.pdf
    arxiv: http://arxiv.org/abs/1504.06375
    github: https://github.com/s9xie/hed

    Unsupervised Learning of Edges
    intro: CVPR 2016. Facebook AI Research
    arxiv: http://arxiv.org/abs/1511.04166
    zn-blog: http://www.leiphone.com/news/201607/b1trsg9j6GSMnjOP.html

    Pushing the Boundaries of Boundary Detection using Deep Learning
    arxiv: http://arxiv.org/abs/1511.07386

    Convolutional Oriented Boundaries
    intro: ECCV 2016
    arxiv: http://arxiv.org/abs/1608.02755

    Convolutional Oriented Boundaries: From Image Segmentation to High-Level Tasks
    project page: http://www.vision.ee.ethz.ch/~cvlsegmentation/
    arxiv: https://arxiv.org/abs/1701.04658
    github: https://github.com/kmaninis/COB

    Richer Convolutional Features for Edge Detection
    intro: CVPR 2017
    keywords: richer convolutional features (RCF)
    arxiv: https://arxiv.org/abs/1612.02103
    github: https://github.com/yun-liu/rcf

    Contour Detection from Deep Patch-level Boundary Prediction
    https://arxiv.org/abs/1705.03159
    CASENet: Deep Category-Aware Semantic Edge Detection
    intro: CVPR 2017
    arxiv: https://arxiv.org/abs/1705.09759

    Skeleton Detection
    Object Skeleton Extraction in Natural Images by Fusing Scale-associated Deep Side Outputs


    arxiv: http://arxiv.org/abs/1603.09446
    github: https://github.com/zeakey/DeepSkeleton

    DeepSkeleton: Learning Multi-task Scale-associated Deep Side Outputs for Object Skeleton Extraction in Natural Images
    arxiv: http://arxiv.org/abs/1609.03659

    SRN: Side-output Residual Network for Object Symmetry Detection in the Wild
    intro: CVPR 2017
    arxiv: https://arxiv.org/abs/1703.02243
    github: https://github.com/KevinKecc/SRN

    Fruit Detection
    Deep Fruit Detection in Orchards
    arxiv: https://arxiv.org/abs/1610.03677

    Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards
    intro: The Journal of Field Robotics in May 2016
    project page: http://confluence.acfr.usyd.edu.au/display/AGPub/
    arxiv: https://arxiv.org/abs/1610.08120

    Part Detection
    Objects as context for part detection
    https://arxiv.org/abs/1703.09529
    Others
    Deep Deformation Network for Object Landmark Localization
    arxiv: http://arxiv.org/abs/1605.01014

    Fashion Landmark Detection in the Wild
    intro: ECCV 2016
    project page: http://personal.ie.cuhk.edu.hk/~lz013/projects/FashionLandmarks.html
    arxiv: http://arxiv.org/abs/1608.03049
    github(Caffe): https://github.com/liuziwei7/fashion-landmarks

    Deep Learning for Fast and Accurate Fashion Item Detection
    intro: Kuznech Inc.
    intro: MultiBox and Fast R-CNN
    paper: https://kddfashion2016.mybluemix.net/kddfashion_finalSubmissions/Deep%20Learning%20for%20Fast%20and%20Accurate%20Fashion%20Item%20Detection.pdf

    OSMDeepOD - OSM and Deep Learning based Object Detection from Aerial Imagery (formerly known as “OSM-Crosswalk-Detection”)


    github: https://github.com/geometalab/OSMDeepOD

    Selfie Detection by Synergy-Constraint Based Convolutional Neural Network
    intro: IEEE SITIS 2016
    arxiv: https://arxiv.org/abs/1611.04357

    Associative Embedding:End-to-End Learning for Joint Detection and Grouping
    arxiv: https://arxiv.org/abs/1611.05424

    Deep Cuboid Detection: Beyond 2D Bounding Boxes
    intro: CMU & Magic Leap
    arxiv: https://arxiv.org/abs/1611.10010

    Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection
    arxiv: https://arxiv.org/abs/1612.03019

    Deep Learning Logo Detection with Data Expansion by Synthesising Context
    arxiv: https://arxiv.org/abs/1612.09322

    Pixel-wise Ear Detection with Convolutional Encoder-Decoder Networks
    arxiv: https://arxiv.org/abs/1702.00307

    Automatic Handgun Detection Alarm in Videos Using Deep Learning
    arxiv: https://arxiv.org/abs/1702.05147
    results: https://github.com/SihamTabik/Pistol-Detection-in-Videos

    Using Deep Networks for Drone Detection
    intro: AVSS 2017
    arxiv: https://arxiv.org/abs/1706.05726

    Object Proposal
    ****DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers**
    arxiv: http://arxiv.org/abs/1510.04445
    github: https://github.com/aghodrati/deepproposal

    Scale-aware Pixel-wise Object Proposal Networks
    intro: IEEE Transactions on Image Processing
    arxiv: http://arxiv.org/abs/1601.04798

    Attend Refine Repeat: Active Box Proposal Generation via In-Out Localization
    intro: BMVC 2016. AttractioNet
    arxiv: https://arxiv.org/abs/1606.04446
    github: https://github.com/gidariss/AttractioNet

    Learning to Segment Object Proposals via Recursive Neural Networks
    arxiv: https://arxiv.org/abs/1612.01057

    Learning Detection with Diverse Proposals
    intro: CVPR 2017
    keywords: differentiable Determinantal Point Process (DPP) layer, Learning Detection with Diverse Proposals (LDDP)
    arxiv: https://arxiv.org/abs/1704.03533

    ScaleNet: Guiding Object Proposal Generation in Supermarkets and Beyond
    keywords: product detection
    arxiv: https://arxiv.org/abs/1704.06752

    Improving Small Object Proposals for Company Logo Detection
    intro: ICMR 2017
    arxiv: https://arxiv.org/abs/1704.08881

    Localization
    ****Beyond Bounding Boxes: Precise Localization of Objects in Images**
    intro: PhD Thesis
    homepage: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.html
    phd-thesis: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.pdf
    github(“SDS using hypercolumns”): https://github.com/bharath272/sds

    Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning
    arxiv: http://arxiv.org/abs/1503.00949

    Weakly Supervised Object Localization Using Size Estimates
    arxiv: http://arxiv.org/abs/1608.04314

    Active Object Localization with Deep Reinforcement Learning
    intro: ICCV 2015
    keywords: Markov Decision Process
    arxiv: https://arxiv.org/abs/1511.06015

    Localizing objects using referring expressions
    intro: ECCV 2016
    keywords: LSTM, multiple instance learning (MIL)
    paper: http://www.umiacs.umd.edu/~varun/files/refexp-ECCV16.pdf
    github: https://github.com/varun-nagaraja/referring-expressions

    LocNet: Improving Localization Accuracy for Object Detection
    intro: CVPR 2016 oral
    arxiv: http://arxiv.org/abs/1511.07763
    github: https://github.com/gidariss/LocNet

    Learning Deep Features for Discriminative Localization
    [图片上传中。。。(1)]
    homepage: http://cnnlocalization.csail.mit.edu/
    arxiv: http://arxiv.org/abs/1512.04150
    github(Tensorflow): https://github.com/jazzsaxmafia/Weakly_detector
    github: https://github.com/metalbubble/CAM
    github: https://github.com/tdeboissiere/VGG16CAM-keras

    ContextLocNet: Context-Aware Deep Network Models for Weakly Supervised Localization


    intro: ECCV 2016
    project page: http://www.di.ens.fr/willow/research/contextlocnet/
    arxiv: http://arxiv.org/abs/1609.04331
    github: https://github.com/vadimkantorov/contextlocnet

    Ensemble of Part Detectors for Simultaneous Classification and Localization
    https://arxiv.org/abs/1705.10034
    Tutorials / Talks
    ****Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection**
    slides: http://research.microsoft.com/en-us/um/people/kahe/iccv15tutorial/iccv2015_tutorial_convolutional_feature_maps_kaiminghe.pdf

    Towards Good Practices for Recognition & Detection
    intro: Hikvision Research Institute. Supervised Data Augmentation (SDA)
    slides: http://image-net.org/challenges/talks/2016/Hikvision_at_ImageNet_2016.pdf

    Projects
    ****TensorBox: a simple framework for training neural networks to detect objects in images**
    intro: “The basic model implements the simple and robust GoogLeNet-OverFeat algorithm. We additionally provide an implementation of the ReInspect algorithm”
    github: https://github.com/Russell91/TensorBox

    Object detection in torch: Implementation of some object detection frameworks in torch
    github: https://github.com/fmassa/object-detection.torch

    Using DIGITS to train an Object Detection network
    github: https://github.com/NVIDIA/DIGITS/blob/master/examples/object-detection/README.md

    FCN-MultiBox Detector
    intro: Full convolution MultiBox Detector (like SSD) implemented in Torch.
    github: https://github.com/teaonly/FMD.torch

    KittiBox: A car detection model implemented in Tensorflow.
    keywords: MultiNet
    intro: KittiBox is a collection of scripts to train out model FastBox on the Kitti Object Detection Dataset
    github: https://github.com/MarvinTeichmann/KittiBox

    Tools
    ****BeaverDam: Video annotation tool for deep learning training labels**
    https://github.com/antingshen/BeaverDam
    Blogs
    ****Convolutional Neural Networks for Object Detection**
    http://rnd.azoft.com/convolutional-neural-networks-object-detection/
    Introducing automatic object detection to visual search (Pinterest)
    keywords: Faster R-CNN
    blog: https://engineering.pinterest.com/blog/introducing-automatic-object-detection-visual-search
    demo: https://engineering.pinterest.com/sites/engineering/files/Visual%20Search%20V1%20-%20Video.mp4
    review: https://news.developer.nvidia.com/pinterest-introduces-the-future-of-visual-search/?mkt_tok=eyJpIjoiTnpaa01UWXpPRE0xTURFMiIsInQiOiJJRjcybjkwTmtmallORUhLOFFFODBDclFqUlB3SWlRVXJXb1MrQ013TDRIMGxLQWlBczFIeWg0TFRUdnN2UHY2ZWFiXC9QQVwvQzBHM3B0UzBZblpOSmUyU1FcLzNPWXI4cml2VERwTTJsOFwvOEk9In0%3D

    Deep Learning for Object Detection with DIGITS
    blog: https://devblogs.nvidia.com/parallelforall/deep-learning-object-detection-digits/

    Analyzing The Papers Behind Facebook’s Computer Vision Approach
    keywords: DeepMask, SharpMask, MultiPathNet
    blog: https://adeshpande3.github.io/adeshpande3.github.io/Analyzing-the-Papers-Behind-Facebook’s-Computer-Vision-Approach/

    Easily Create High Quality Object Detectors with Deep Learning
    intro: dlib v19.2
    blog: http://blog.dlib.net/2016/10/easily-create-high-quality-object.html

    How to Train a Deep-Learned Object Detection Model in the Microsoft Cognitive Toolkit
    blog: https://blogs.technet.microsoft.com/machinelearning/2016/10/25/how-to-train-a-deep-learned-object-detection-model-in-cntk/
    github: https://github.com/Microsoft/CNTK/tree/master/Examples/Image/Detection/FastRCNN

    Object Detection in Satellite Imagery, a Low Overhead Approach
    part 1: https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-i-cbd96154a1b7#.2csh4iwx9
    part 2: https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-ii-893f40122f92#.f9b7dgf64

    You Only Look Twice — Multi-Scale Object Detection in Satellite Imagery With Convolutional Neural Networks
    part 1: https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-38dad1cf7571#.fmmi2o3of
    part 2: https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-34f72f659588#.nwzarsz1t

    Faster R-CNN Pedestrian and Car Detection
    blog: https://bigsnarf.wordpress.com/2016/11/07/faster-r-cnn-pedestrian-and-car-detection/
    ipn: https://gist.github.com/bigsnarfdude/2f7b2144065f6056892a98495644d3e0#file-demo_faster_rcnn_notebook-ipynb
    github: https://github.com/bigsnarfdude/Faster-RCNN_TF

    Small U-Net for vehicle detection
    blog: https://medium.com/@vivek.yadav/small-u-net-for-vehicle-detection-9eec216f9fd6#.md4u80kad

    Region of interest pooling explained
    blog: https://deepsense.io/region-of-interest-pooling-explained/
    github: https://github.com/deepsense-io/roi-pooling

    Supercharge your Computer Vision models with the TensorFlow Object Detection API
    blog: https://research.googleblog.com/2017/06/supercharge-your-computer-vision-models.html
    github: https://github.com/tensorflow/models/tree/master/object_detectionLocalization
    ****Beyond Bounding Boxes: Precise Localization of Objects in Images**
    intro: PhD Thesis
    homepage: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.html
    phd-thesis: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.pdf
    github(“SDS using hypercolumns”): https://github.com/bharath272/sds

    Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning
    arxiv: http://arxiv.org/abs/1503.00949

    Weakly Supervised Object Localization Using Size Estimates
    arxiv: http://arxiv.org/abs/1608.04314

    Active Object Localization with Deep Reinforcement Learning
    intro: ICCV 2015
    keywords: Markov Decision Process
    arxiv: https://arxiv.org/abs/1511.06015

    Localizing objects using referring expressions
    intro: ECCV 2016
    keywords: LSTM, multiple instance learning (MIL)
    paper: http://www.umiacs.umd.edu/~varun/files/refexp-ECCV16.pdf
    github: https://github.com/varun-nagaraja/referring-expressions

    LocNet: Improving Localization Accuracy for Object Detection
    intro: CVPR 2016 oral
    arxiv: http://arxiv.org/abs/1511.07763
    github: https://github.com/gidariss/LocNet

    Learning Deep Features for Discriminative Localization


    homepage: http://cnnlocalization.csail.mit.edu/
    arxiv: http://arxiv.org/abs/1512.04150
    github(Tensorflow): https://github.com/jazzsaxmafia/Weakly_detector
    github: https://github.com/metalbubble/CAM
    github: https://github.com/tdeboissiere/VGG16CAM-keras

    ContextLocNet: Context-Aware Deep Network Models for Weakly Supervised Localization
    [图片上传中。。。(2)]
    intro: ECCV 2016
    project page: http://www.di.ens.fr/willow/research/contextlocnet/
    arxiv: http://arxiv.org/abs/1609.04331
    github: https://github.com/vadimkantorov/contextlocnet

    Ensemble of Part Detectors for Simultaneous Classification and Localization
    https://arxiv.org/abs/1705.10034
    Tutorials / Talks
    ****Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection**
    slides: http://research.microsoft.com/en-us/um/people/kahe/iccv15tutorial/iccv2015_tutorial_convolutional_feature_maps_kaiminghe.pdf

    Towards Good Practices for Recognition & Detection
    intro: Hikvision Research Institute. Supervised Data Augmentation (SDA)
    slides: http://image-net.org/challenges/talks/2016/Hikvision_at_ImageNet_2016.pdf

    Projects
    ****TensorBox: a simple framework for training neural networks to detect objects in images**
    intro: “The basic model implements the simple and robust GoogLeNet-OverFeat algorithm. We additionally provide an implementation of the ReInspect algorithm”
    github: https://github.com/Russell91/TensorBox

    Object detection in torch: Implementation of some object detection frameworks in torch
    github: https://github.com/fmassa/object-detection.torch

    Using DIGITS to train an Object Detection network
    github: https://github.com/NVIDIA/DIGITS/blob/master/examples/object-detection/README.md

    FCN-MultiBox Detector
    intro: Full convolution MultiBox Detector (like SSD) implemented in Torch.
    github: https://github.com/teaonly/FMD.torch

    KittiBox: A car detection model implemented in Tensorflow.
    keywords: MultiNet
    intro: KittiBox is a collection of scripts to train out model FastBox on the Kitti Object Detection Dataset
    github: https://github.com/MarvinTeichmann/KittiBox

    Tools
    ****BeaverDam: Video annotation tool for deep learning training labels**
    https://github.com/antingshen/BeaverDam
    Blogs
    ****Convolutional Neural Networks for Object Detection**
    http://rnd.azoft.com/convolutional-neural-networks-object-detection/
    Introducing automatic object detection to visual search (Pinterest)
    keywords: Faster R-CNN
    blog: https://engineering.pinterest.com/blog/introducing-automatic-object-detection-visual-search
    demo: https://engineering.pinterest.com/sites/engineering/files/Visual%20Search%20V1%20-%20Video.mp4
    review: https://news.developer.nvidia.com/pinterest-introduces-the-future-of-visual-search/?mkt_tok=eyJpIjoiTnpaa01UWXpPRE0xTURFMiIsInQiOiJJRjcybjkwTmtmallORUhLOFFFODBDclFqUlB3SWlRVXJXb1MrQ013TDRIMGxLQWlBczFIeWg0TFRUdnN2UHY2ZWFiXC9QQVwvQzBHM3B0UzBZblpOSmUyU1FcLzNPWXI4cml2VERwTTJsOFwvOEk9In0%3D

    Deep Learning for Object Detection with DIGITS
    blog: https://devblogs.nvidia.com/parallelforall/deep-learning-object-detection-digits/

    Analyzing The Papers Behind Facebook’s Computer Vision Approach
    keywords: DeepMask, SharpMask, MultiPathNet
    blog: https://adeshpande3.github.io/adeshpande3.github.io/Analyzing-the-Papers-Behind-Facebook’s-Computer-Vision-Approach/

    Easily Create High Quality Object Detectors with Deep Learning
    intro: dlib v19.2
    blog: http://blog.dlib.net/2016/10/easily-create-high-quality-object.html

    How to Train a Deep-Learned Object Detection Model in the Microsoft Cognitive Toolkit
    blog: https://blogs.technet.microsoft.com/machinelearning/2016/10/25/how-to-train-a-deep-learned-object-detection-model-in-cntk/
    github: https://github.com/Microsoft/CNTK/tree/master/Examples/Image/Detection/FastRCNN

    Object Detection in Satellite Imagery, a Low Overhead Approach
    part 1: https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-i-cbd96154a1b7#.2csh4iwx9
    part 2: https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-ii-893f40122f92#.f9b7dgf64

    You Only Look Twice — Multi-Scale Object Detection in Satellite Imagery With Convolutional Neural Networks
    part 1: https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-38dad1cf7571#.fmmi2o3of
    part 2: https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-34f72f659588#.nwzarsz1t

    Faster R-CNN Pedestrian and Car Detection
    blog: https://bigsnarf.wordpress.com/2016/11/07/faster-r-cnn-pedestrian-and-car-detection/
    ipn: https://gist.github.com/bigsnarfdude/2f7b2144065f6056892a98495644d3e0#file-demo_faster_rcnn_notebook-ipynb
    github: https://github.com/bigsnarfdude/Faster-RCNN_TF

    Small U-Net for vehicle detection
    blog: https://medium.com/@vivek.yadav/small-u-net-for-vehicle-detection-9eec216f9fd6#.md4u80kad

    Region of interest pooling explained
    blog: https://deepsense.io/region-of-interest-pooling-explained/
    github: https://github.com/deepsense-io/roi-pooling

    Supercharge your Computer Vision models with the TensorFlow Object Detection API
    blog: https://research.googleblog.com/2017/06/supercharge-your-computer-vision-models.html
    github: https://github.com/tensorflow/models/tree/master/object_detectionLocalization
    ****Beyond Bounding Boxes: Precise Localization of Objects in Images**
    intro: PhD Thesis
    homepage: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.html
    phd-thesis: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.pdf
    github(“SDS using hypercolumns”): https://github.com/bharath272/sds

    Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning
    arxiv: http://arxiv.org/abs/1503.00949

    Weakly Supervised Object Localization Using Size Estimates
    arxiv: http://arxiv.org/abs/1608.04314

    Active Object Localization with Deep Reinforcement Learning
    intro: ICCV 2015
    keywords: Markov Decision Process
    arxiv: https://arxiv.org/abs/1511.06015

    Localizing objects using referring expressions
    intro: ECCV 2016
    keywords: LSTM, multiple instance learning (MIL)
    paper: http://www.umiacs.umd.edu/~varun/files/refexp-ECCV16.pdf
    github: https://github.com/varun-nagaraja/referring-expressions

    LocNet: Improving Localization Accuracy for Object Detection
    intro: CVPR 2016 oral
    arxiv: http://arxiv.org/abs/1511.07763
    github: https://github.com/gidariss/LocNet

    Learning Deep Features for Discriminative Localization
    [图片上传中。。。(1)]
    homepage: http://cnnlocalization.csail.mit.edu/
    arxiv: http://arxiv.org/abs/1512.04150
    github(Tensorflow): https://github.com/jazzsaxmafia/Weakly_detector
    github: https://github.com/metalbubble/CAM
    github: https://github.com/tdeboissiere/VGG16CAM-keras

    ContextLocNet: Context-Aware Deep Network Models for Weakly Supervised Localization
    [图片上传中。。。(2)]
    intro: ECCV 2016
    project page: http://www.di.ens.fr/willow/research/contextlocnet/
    arxiv: http://arxiv.org/abs/1609.04331
    github: https://github.com/vadimkantorov/contextlocnet

    Ensemble of Part Detectors for Simultaneous Classification and Localization
    https://arxiv.org/abs/1705.10034
    Tutorials / Talks
    ****Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection**
    slides: http://research.microsoft.com/en-us/um/people/kahe/iccv15tutorial/iccv2015_tutorial_convolutional_feature_maps_kaiminghe.pdf

    Towards Good Practices for Recognition & Detection
    intro: Hikvision Research Institute. Supervised Data Augmentation (SDA)
    slides: http://image-net.org/challenges/talks/2016/Hikvision_at_ImageNet_2016.pdf

    Projects
    ****TensorBox: a simple framework for training neural networks to detect objects in images**
    intro: “The basic model implements the simple and robust GoogLeNet-OverFeat algorithm. We additionally provide an implementation of the ReInspect algorithm”
    github: https://github.com/Russell91/TensorBox

    Object detection in torch: Implementation of some object detection frameworks in torch
    github: https://github.com/fmassa/object-detection.torch

    Using DIGITS to train an Object Detection network
    github: https://github.com/NVIDIA/DIGITS/blob/master/examples/object-detection/README.md

    FCN-MultiBox Detector
    intro: Full convolution MultiBox Detector (like SSD) implemented in Torch.
    github: https://github.com/teaonly/FMD.torch

    KittiBox: A car detection model implemented in Tensorflow.
    keywords: MultiNet
    intro: KittiBox is a collection of scripts to train out model FastBox on the Kitti Object Detection Dataset
    github: https://github.com/MarvinTeichmann/KittiBox

    Tools
    ****BeaverDam: Video annotation tool for deep learning training labels**
    https://github.com/antingshen/BeaverDam
    Blogs
    ****Convolutional Neural Networks for Object Detection**
    http://rnd.azoft.com/convolutional-neural-networks-object-detection/
    Introducing automatic object detection to visual search (Pinterest)
    keywords: Faster R-CNN
    blog: https://engineering.pinterest.com/blog/introducing-automatic-object-detection-visual-search
    demo: https://engineering.pinterest.com/sites/engineering/files/Visual%20Search%20V1%20-%20Video.mp4
    review: https://news.developer.nvidia.com/pinterest-introduces-the-future-of-visual-search/?mkt_tok=eyJpIjoiTnpaa01UWXpPRE0xTURFMiIsInQiOiJJRjcybjkwTmtmallORUhLOFFFODBDclFqUlB3SWlRVXJXb1MrQ013TDRIMGxLQWlBczFIeWg0TFRUdnN2UHY2ZWFiXC9QQVwvQzBHM3B0UzBZblpOSmUyU1FcLzNPWXI4cml2VERwTTJsOFwvOEk9In0%3D

    Deep Learning for Object Detection with DIGITS
    blog: https://devblogs.nvidia.com/parallelforall/deep-learning-object-detection-digits/

    Analyzing The Papers Behind Facebook’s Computer Vision Approach
    keywords: DeepMask, SharpMask, MultiPathNet
    blog: https://adeshpande3.github.io/adeshpande3.github.io/Analyzing-the-Papers-Behind-Facebook’s-Computer-Vision-Approach/

    Easily Create High Quality Object Detectors with Deep Learning
    intro: dlib v19.2
    blog: http://blog.dlib.net/2016/10/easily-create-high-quality-object.html

    How to Train a Deep-Learned Object Detection Model in the Microsoft Cognitive Toolkit
    blog: https://blogs.technet.microsoft.com/machinelearning/2016/10/25/how-to-train-a-deep-learned-object-detection-model-in-cntk/
    github: https://github.com/Microsoft/CNTK/tree/master/Examples/Image/Detection/FastRCNN

    Object Detection in Satellite Imagery, a Low Overhead Approach
    part 1: https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-i-cbd96154a1b7#.2csh4iwx9
    part 2: https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-ii-893f40122f92#.f9b7dgf64

    You Only Look Twice — Multi-Scale Object Detection in Satellite Imagery With Convolutional Neural Networks
    part 1: https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-38dad1cf7571#.fmmi2o3of
    part 2: https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-34f72f659588#.nwzarsz1t

    Faster R-CNN Pedestrian and Car Detection
    blog: https://bigsnarf.wordpress.com/2016/11/07/faster-r-cnn-pedestrian-and-car-detection/
    ipn: https://gist.github.com/bigsnarfdude/2f7b2144065f6056892a98495644d3e0#file-demo_faster_rcnn_notebook-ipynb
    github: https://github.com/bigsnarfdude/Faster-RCNN_TF

    Small U-Net for vehicle detection
    blog: https://medium.com/@vivek.yadav/small-u-net-for-vehicle-detection-9eec216f9fd6#.md4u80kad

    Region of interest pooling explained
    blog: https://deepsense.io/region-of-interest-pooling-explained/
    github: https://github.com/deepsense-io/roi-pooling

    Supercharge your Computer Vision models with the TensorFlow Object Detection API
    blog: https://research.googleblog.com/2017/06/supercharge-your-computer-vision-models.html
    github: https://github.com/tensorflow/models/tree/master/object_detection

    相关文章

      网友评论

        本文标题:【转】Object Detection博客(下)

        本文链接:https://www.haomeiwen.com/subject/kqjehxtx.html