写在之前
本书涉及的源程序和数据都可以在以下网站中找到:http://guidetodatamining.com/
这本书理论比较简单,书中错误较少,动手锻炼较多,如果每个代码都自己写出来,收获不少。总结:适合入门。
欢迎转载,转载请注明出处,如有问题欢迎指正。
合集地址:https://www.zybuluo.com/hainingwyx/note/559139
基于物品属性的过滤
新物品加入,会因为没有被评分过,永远不会被推荐。Pandora是基于基于一种称为音乐基因的项目。
当所用数据挖掘方法基于特征的值来计算 两个对象的距离,且不同特征的尺度不同,就需要使用归一化。一般使用均值和标准差来进行归一化,但这种方法可能会受到离群点的影响,所以引入改进后的归一化:均值用中位数(u)代替,标准差用绝对标准差(asd)代替。
# 计算中位数和绝对标准差
def getMedian(self, alist):
"""return median of alist"""
if alist == []:
return []
blist = sorted(alist)
length = len(alist)
if length % 2 == 1:
# length of list is odd so return middle element
return blist[int(((length + 1) / 2) - 1)]
else:
# length of list is even so compute midpoint
v1 = blist[int(length / 2)]
v2 =blist[(int(length / 2) - 1)]
return (v1 + v2) / 2.0
def getAbsoluteStandardDeviation(self, alist, median):
"""given alist and median return absolute standard deviation"""
sum = 0
for item in alist:
sum += abs(item - median)
return sum / len(alist)
def unitTest():
list1 = [54, 72, 78, 49, 65, 63, 75, 67, 54]
list2 = [54, 72, 78, 49, 65, 63, 75, 67, 54, 68]
list3 = [69]
list4 = [69, 72]
classifier = Classifier('data/athletesTrainingSet.txt')
m1 = classifier.getMedian(list1)
m2 = classifier.getMedian(list2)
m3 = classifier.getMedian(list3)
m4 = classifier.getMedian(list4)
asd1 = classifier.getAbsoluteStandardDeviation(list1, m1)
asd2 = classifier.getAbsoluteStandardDeviation(list2, m2)
asd3 = classifier.getAbsoluteStandardDeviation(list3, m3)
asd4 = classifier.getAbsoluteStandardDeviation(list4, m4)
assert(round(m1, 3) == 65)
assert(round(m2, 3) == 66)
assert(round(m3, 3) == 69)
assert(round(m4, 3) == 70.5)
assert(round(asd1, 3) == 8)
assert(round(asd2, 3) == 7.5)
assert(round(asd3, 3) == 0)
assert(round(asd4, 3) == 1.5)
print("getMedian and getAbsoluteStandardDeviation work correctly")
assert语句用于软件组件测试的做法是一种常用的技术。产品每一部分分成一段实现代码加上对实现代码的测试代码,这一点十分重要。
# 归一化
def normalizeColumn(self, columnNumber):
"""given a column number, normalize that column in self.data"""
# first extract values to list, v is vector, clounm is 0/1,col is a list
col = [v[1][columnNumber] for v in self.data]
median = self.getMedian(col)
asd = self.getAbsoluteStandardDeviation(col, median)
#print("Median: %f ASD = %f" % (median, asd))
self.medianAndDeviation.append((median, asd))
for v in self.data:
v[1][columnNumber] = (v[1][columnNumber] - median) / asd
网友评论