Zookeeper 是什么?
ZooKeeper是一种分布式协调服务,用于管理大型主机。在分布式环境中协调和管理服务是一个复杂的过程。ZooKeeper通过其简单的架构和API解决了这个问题。ZooKeeper允许开发人员专注于核心应用程序逻辑,而不必担心应用程序的分布式特性。
为什么需要Zookeeper?
分布式架构
什么是分布式架构?
分布式应用可以在给定时间(同时)在网络中的多个系统上运行,通过协调它们以快速有效的方式完成特定任务。通常来说,对于复杂而耗时的任务,非分布式应用(运行在单个系统中)需要几个小时才能完成,而分布式应用通过使用所有系统涉及的计算能力可以在几分钟内完成。
通过将分布式应用配置为在更多系统上运行,可以进一步减少完成任务的时间。分布式应用正在运行的一组系统称为集群,而在集群中运行的每台机器被称为节点。
分布式应用有两部分,Server(服务器)和Client(客户端)应用程序。服务器应用程序实际上是分布式的,并具有通用接口,以便客户端可以连接到集群中的任何服务器并获得相同的结果。客户端应用程序是与分布式应用进行交互的工具。

分布式应用的优点
-
可靠性- 单个或几个系统的故障不会使整个系统出现故障。
-
可扩展性- 可以在需要时增加性能,通过添加更多机器,在应用程序配置中进行微小的更改,而不会有停机时间。
-
透明性- 隐藏系统的复杂性,并将其显示为单个实体/应用程序。
分布式应用的挑战
-
竞争条件- 两个或多个机器尝试执行特定任务,实际上只需在任意给定时间由单个机器完成。例如,共享资源只能在任意给定时间由单个机器修改。
-
死锁- 两个或多个操作等待彼此无限期完成。
-
服务发现 -client如何发现server,检测server存活性。
-
不一致- 数据的部分失败。
Zookeeper 如何解决分布式问题
Apache ZooKeeper是由集群(节点组)使用的一种服务,用于在自身之间协调,并通过稳健的同步技术维护共享数据。ZooKeeper本身是一个分布式应用程序,为写入分布式应用程序提供服务。
ZooKeeper提供的常见服务如下 :
-
命名服务- 按名称标识集群中的节点。它类似于DNS,但仅对于节点。
-
配置管理- 加入节点的最近的和最新的系统配置信息。
-
集群管理- 实时地在集群和节点状态中加入/离开节点。
-
选举算法- 选举一个节点作为协调目的的leader。
-
锁定和同步服务- 在修改数据的同时锁定数据。此机制可帮助你在连接其他分布式应用程序(如Apache HBase)时进行自动故障恢复。
-
高度可靠的数据注册表- 即使在一个或几个节点关闭时也可以获得数据。
分布式应用程序提供了很多好处,但它们也抛出了一些复杂和难以解决的挑战。ZooKeeper框架提供了一个完整的机制来克服所有的挑战。竞争条件和死锁使用故障安全同步方法进行处理。另一个主要缺点是数据的不一致性,ZooKeeper使用原子性解析。
看看下面的图表。它描述了ZooKeeper的“客户端-服务器架构”。

作为ZooKeeper架构的一部分的每个组件在下表中进行了说明。
部分 | 描述 |
---|---|
Client(客户端) | 客户端,我们的分布式应用集群中的一个节点,从服务器访问信息。对于特定的时间间隔,每个客户端向服务器发送消息以使服务器知道客户端是活跃的。类似地,当客户端连接时,服务器发送确认码。如果连接的服务器没有响应,客户端会自动将消息重定向到另一个服务器。 |
Server(服务器) | 服务器,我们的ZooKeeper总体中的一个节点,为客户端提供所有的服务。向客户端发送确认码以告知服务器是活跃的。 |
Ensemble | ZooKeeper服务器组。形成ensemble所需的最小节点数为3。 |
Leader | 服务器节点,如果任何连接的节点失败,则执行自动恢复。Leader在服务启动时被选举。 |
Follower | 跟随leader指令的服务器节点。 |
层次命名空间
下图描述了用于内存表示的ZooKeeper文件系统的树结构。ZooKeeper节点称为znode。每个znode由一个名称标识,并用路径(/)序列分隔。
-
在图中,首先有一个由“/”分隔的znode。在根目录下,你有两个逻辑命名空间config和workers。
-
config命名空间用于集中式配置管理,workers命名空间用于命名。
-
在config命名空间下,每个znode最多可存储1MB的数据。这与UNIX文件系统相类似,除了父znode也可以存储数据。这种结构的主要目的是存储同步数据并描述znode的元数据。此结构称为ZooKeeper数据模型。

ZooKeeper数据模型中的每个znode都维护着一个stat结构。一个stat仅提供一个znode的元数据。它由版本号,操作控制列表(ACL),时间戳和数据长度组成。
-
版本号- 每个znode都有版本号,这意味着每当与znode相关联的数据发生变化时,其对应的版本号也会增加。当多个zookeeper客户端尝试在同一znode上执行操作时,版本号的使用就很重要。
-
操作控制列表(ACL)- ACL基本上是访问znode的认证机制。它管理所有znode读取和写入操作。
-
时间戳- 时间戳表示创建和修改znode所经过的时间。它通常以毫秒为单位。ZooKeeper从“事务ID"(zxid)标识znode的每个更改。Zxid是唯一的,并且为每个事务保留时间,以便你可以轻松地确定从一个请求到另一个请求所经过的时间。
-
数据长度- 存储在znode中的数据总量是数据长度。你最多可以存储1MB的数据。
Znode的类型
Znode被分为持久(persistent)节点,顺序(sequential)节点和临时(ephemeral)节点。
-
**持久节点 **- 即使在创建该特定znode的客户端断开连接后,持久节点仍然存在。默认情况下,除非另有说明,否则所有znode都是持久的。
-
临时节点- 客户端活跃时,临时节点就是有效的。当客户端与ZooKeeper集合断开连接时,临时节点会自动删除。因此,只有临时节点不允许有子节点。如果临时节点被删除,则下一个合适的节点将填充其位置。临时节点在leader选举中起着重要作用。
-
顺序节点- 顺序节点可以是持久的或临时的。当一个新的znode被创建为一个顺序节点时,ZooKeeper通过将10位的序列号附加到原始名称来设置znode的路径。例如,如果将具有路径/myapp的znode创建为顺序节点,则ZooKeeper会将路径更改为/myapp0000000001,并将下一个序列号设置为0000000002。如果两个顺序节点是同时创建的,那么ZooKeeper不会对每个znode使用相同的数字。顺序节点在锁定和同步中起重要作用。
Sessions(会话)
会话对于ZooKeeper的操作非常重要。会话中的请求按FIFO顺序执行。一旦客户端连接到服务器,将建立会话并向客户端分配会话ID。
客户端以特定的时间间隔发送心跳以保持会话有效。如果ZooKeeper集合在超过服务器开启时指定的期间(会话超时)都没有从客户端接收到心跳,则它会判定客户端死机。
会话超时通常以毫秒为单位。当会话由于任何原因结束时,在该会话期间创建的临时节点也会被删除。
Watches(监视)
监视是一种简单的机制,使客户端收到关于ZooKeeper集合中的更改的通知。客户端可以在读取特定znode时设置Watches。Watches会向注册的客户端发送任何znode(客户端注册表)更改的通知。
Znode更改是与znode相关的数据的修改或znode的子项中的更改。只触发一次watches。如果客户端想要再次通知,则必须通过另一个读取操作来完成。当连接会话过期时,客户端将与服务器断开连接,相关的watches也将被删除。
ZooKeeper典型使用场景一览
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基 于这样的特性,使得zookeeper能够应用于很多场景。
数据发布与订阅
发布与订阅即所谓的配置管理,顾名思义就是将数据发布到zk节点上,供订阅者动态获取数据,实现配置信息的集中式管理和动态更新。例如全局的配置信息,地址列表等就非常适合使用。
-
索引信息和集群中机器节点状态存放在zk的一些指定节点,供各个客户端订阅使用。
-
系统日志(经过处理后的)存储,这些日志通常2-3天后被清除。
-
应用中用到的一些配置信息集中管理,在应用启动的时候主动来获取一次,并且在节点上注册一个Watcher,以后每次配置有更新,实时通知到应用,获取最新配置信息。
-
业务逻辑中需要用到的一些全局变量,比如一些消息中间件的消息队列通常有个offset,这个offset存放在zk上,这样集群中每个发送者都能知道当前的发送进度。
-
系统中有些信息需要动态获取,并且还会存在人工手动去修改这个信息。以前通常是暴露出接口,例如JMX接口,有了zk后,只要将这些信息存放到zk节点上即可。
分布通知/协调
ZooKeeper 中特有watcher注册与异步通知机制,能够很好的实现分布式环境下不同系统之间的通知与协调,实现对数据变更的实时处理。使用方法通常是不同系统都对 ZK上同一个znode进行注册,监听znode的变化(包括znode本身内容及子节点的),其中一个系统update了znode,那么另一个系统能 够收到通知,并作出相应处理。
- 另一种心跳检测机制:检测系统和被检测系统之间并不直接关联起来,而是通过zk上某个节点关联,大大减少系统耦合。
- 另一种系统调度模式:某系统有控制台和推送系统两部分组成,控制台的职责是控制推送系统进行相应的推送工作。管理人员在控制台作的一些操作,实际上是修改 了ZK上某些节点的状态,而zk就把这些变化通知给他们注册Watcher的客户端,即推送系统,于是,作出相应的推送任务。
- 另一种工作汇报模式:一些类似于任务分发系统,子任务启动后,到zk来注册一个临时节点,并且定时将自己的进度进行汇报(将进度写回这个临时节点),这样任务管理者就能够实时知道任务进度。 总之,使用zookeeper来进行分布式通知和协调能够大大降低系统之间的耦合。
分布式锁
分布式锁,这个主要得益于ZooKeeper为我们保证了数据的强一致性,即用户只要完全相信每时每刻,zk集群中任意节点(一个zk server)上的相同znode的数据是一定是相同的。锁服务可以分为两类,一个是保持独占,另一个是控制时序。 保持独占,就是所有试图来获取这个锁的客户端,最终只有一个可以成功获得这把锁。通常的做法是把zk上的一个znode看作是一把锁,通过create znode的方式来实现。所有客户端都去创建 /distribute_lock 节点,最终成功创建的那个客户端也即拥有了这把锁。 控制时序,就是所有视图来获取这个锁的客户端,最终都是会被安排执行,只是有个全局时序了。做法和上面基本类似,只是这里 /distribute_lock 已经预先存在,客户端在它下面创建临时有序节点(这个可以通过节点的属性控制:CreateMode.EPHEMERAL_SEQUENTIAL来指定)。Zk的父节点(/distribute_lock)维持一份sequence,保证子节点创建的时序性,从而也形成了每个客户端的全局时序。
集群管理
-
集群机器监控:这通常用于那种对集群中机器状态,机器在线率有较高要求的场景,能够快速对集群中机器变化作出响应。这样的场景中,往往有一个监控系统,实时检测集群机器是否存活。过去的做法通常是:监控系统通过某种手段(比如ping)定时检测每个机器,或者每个机器自己定时向监控系统汇报“我还活着”。 这种做法可行,但是存在两个比较明显的问题:1. 集群中机器有变动的时候,牵连修改的东西比较多。2. 有一定的延时。 利用ZooKeeper有两个特性,就可以实时另一种集群机器存活性监控系统:a. 客户端在节点 x 上注册一个Watcher,那么如果 x 的子节点变化了,会通知该客户端。b. 创建EPHEMERAL类型的节点,一旦客户端和服务器的会话结束或过期,那么该节点就会消失。
-
Master选举则是zookeeper中最为经典的使用场景了。 在分布式环境中,相同的业务应用分布在不同的机器上,有些业务逻辑(例如一些耗时的计算,网络I/O处理),往往只需要让整个集群中的某一台机器进行执行, 其余机器可以共享这个结果,这样可以大大减少重复劳动,提高性能,于是这个master选举便是这种场景下的碰到的主要问题。 利用ZooKeeper的强一致性,能够保证在分布式高并发情况下节点创建的全局唯一性,即:同时有多个客户端请求创建 /currentMaster 节点,最终一定只有一个客户端请求能够创建成功。
Zookeeper安装
Zookeeper安装详见
Zookeeper CLI
ZooKeeper命令行界面(CLI)用于与ZooKeeper集合进行交互以进行开发。它有助于调试和解决不同的选项。
要执行ZooKeeper CLI操作,首先打开ZooKeeper服务器(“bin/zkServer.sh start”),然后打开ZooKeeper客户端(“bin/zkCli.sh”)。一旦客户端启动,你可以执行以下操作:
1、创建znode
2、获取数据
3、监视znode的变化
4、设置数据
5、创建znode的子节点
6、列出znode的子节点
7、检查状态
8、移除/删除znode
现在让我们用一个例子逐个了解上面的命令。
创建Znodes
用给定的路径创建一个znode。flag参数指定创建的znode是临时的,持久的还是顺序的。默认情况下,所有znode都是持久的。
当会话过期或客户端断开连接时,临时节点(flag:-e)将被自动删除。
顺序节点保证znode路径将是唯一的。
ZooKeeper集合将向znode路径填充10位序列号。例如,znode路径 /myapp 将转换为/myapp0000000001,下一个序列号将为/myapp0000000002。如果没有指定flag,则znode被认为是持久的。
语法
create /path /data
示例
create /FirstZnode “Myfirstzookeeper-app"
输出
[zk: localhost:2181(CONNECTED) 0] create /FirstZnode “Myfirstzookeeper-app"
Created /FirstZnode
要创建顺序节点,请添加flag:-s,如下所示。
语法
create -s /path /data
示例
create -s /FirstZnode second-data
输出
[zk: localhost:2181(CONNECTED) 2] create -s /FirstZnode “second-data"
Created /FirstZnode0000000023
要创建临时节点,请添加flag:-e,如下所示。
语法
create -e /path /data
示例
create -e /SecondZnode “Ephemeral-data"
输出
[zk: localhost:2181(CONNECTED) 2] create -e /SecondZnode “Ephemeral-data"
Created /SecondZnode
记住当客户端断开连接时,临时节点将被删除。你可以通过退出ZooKeeper CLI,然后重新打开CLI来尝试。
获取数据
它返回znode的关联数据和指定znode的元数据。你将获得信息,例如上次修改数据的时间,修改的位置以及数据的相关信息。此CLI还用于分配监视器以显示数据相关的通知。
语法
get /path
示例
get /FirstZnode
输出
[zk: localhost:2181(CONNECTED) 1] get /FirstZnode
“Myfirstzookeeper-app"
cZxid = 0x7f
ctime = Tue Sep 29 16:15:47 IST 2015
mZxid = 0x7f
mtime = Tue Sep 29 16:15:47 IST 2015
pZxid = 0x7f
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 22
numChildren = 0
要访问顺序节点,必须输入znode的完整路径。
示例
get /FirstZnode0000000023
输出
[zk: localhost:2181(CONNECTED) 1] get /FirstZnode0000000023
“Second-data"
cZxid = 0x80
ctime = Tue Sep 29 16:25:47 IST 2015
mZxid = 0x80
mtime = Tue Sep 29 16:25:47 IST 2015
pZxid = 0x80
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 13
numChildren = 0
Watch(监视)
当指定的znode或znode的子数据更改时,监视器会显示通知。你只能在get命令中设置watch。
语法
get /path [watch] 1
### 示例
```shell
get /FirstZnode 1
输出
[zk: localhost:2181(CONNECTED) 1] get /FirstZnode 1
“Myfirstzookeeper-app"
cZxid = 0x7f
ctime = Tue Sep 29 16:15:47 IST 2015
mZxid = 0x7f
mtime = Tue Sep 29 16:15:47 IST 2015
pZxid = 0x7f
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 22
numChildren = 0
输出类似于普通的get命令,但它会等待后台等待znode更改。<从这里开始>
设置数据
设置指定znode的数据。完成此设置操作后,你可以使用getCLI命令检查数据。
语法
set /path /data
示例
set /SecondZnode Data-updated
输出
[zk: localhost:2181(CONNECTED) 1] get /SecondZnode “Data-updated"
cZxid = 0x82
ctime = Tue Sep 29 16:29:50 IST 2015
mZxid = 0x83
mtime = Tue Sep 29 16:29:50 IST 2015
pZxid = 0x82
cversion = 0
dataVersion = 1
aclVersion = 0
ephemeralOwner = 0x15018b47db00000
dataLength = 14
numChildren = 0
如果你在get命令中分配了watch选项(如上一个命令),则输出将类似如下所示。
输出
[zk: localhost:2181(CONNECTED) 1] get /FirstZnode “Mysecondzookeeper-app"
WATCHER: :
WatchedEvent state:SyncConnected type:NodeDataChanged path:/FirstZnode
cZxid = 0x7f
ctime = Tue Sep 29 16:15:47 IST 2015
mZxid = 0x84
mtime = Tue Sep 29 17:14:47 IST 2015
pZxid = 0x7f
cversion = 0
dataVersion = 1
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 23
numChildren = 0
创建子项/子节点
创建子节点类似于创建新的znode。唯一的区别是,子znode的路径也将具有父路径。
语法
create /parent/path/subnode/path /data
示例
create /FirstZnode/Child1 firstchildren
输出
[zk: localhost:2181(CONNECTED) 16] create /FirstZnode/Child1 “firstchildren"
created /FirstZnode/Child1
[zk: localhost:2181(CONNECTED) 17] create /FirstZnode/Child2 “secondchildren"
created /FirstZnode/Child2
列出子项
此命令用于列出和显示znode的子项。
语法
ls /path
示例
ls /MyFirstZnode
输出
[zk: localhost:2181(CONNECTED) 2] ls /MyFirstZnode
[mysecondsubnode, myfirstsubnode]
检查状态
状态描述指定的znode的元数据。它包含时间戳,版本号,ACL,数据长度和子znode等细项。
语法
stat /path
示例
stat /FirstZnode
输出
[zk: localhost:2181(CONNECTED) 1] stat /FirstZnode
cZxid = 0x7f
ctime = Tue Sep 29 16:15:47 IST 2015
mZxid = 0x7f
mtime = Tue Sep 29 17:14:24 IST 2015
pZxid = 0x7f
cversion = 0
dataVersion = 1
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 23
numChildren = 0
移除Znode
移除指定的znode并递归其所有子节点。只有在这样的znode可用的情况下才会发生。
语法
rmr /path
示例
rmr /FirstZnode
输出
[zk: localhost:2181(CONNECTED) 10] rmr /FirstZnode
[zk: localhost:2181(CONNECTED) 11] get /FirstZnode
Node does not exist: /FirstZnode
删除(delete/path)命令类似于remove命令,除了它只适用于没有子节点的znode。
网友评论