美文网首页漫漫程序媛进化鹿程序员IT@程序员猿媛
机器学习基础算法之决策树和随机森林比较(实现鸢尾花数据集分析)

机器学习基础算法之决策树和随机森林比较(实现鸢尾花数据集分析)

作者: keeeeeenon | 来源:发表于2019-04-13 07:55 被阅读57次

    code:

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    from sklearn import tree
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.pipeline import Pipeline
    import pydotplus
     
    if __name__ == "__main__":
       
        iris_feature_E = "sepal lenght", "sepal width", "petal length", "petal width"
        iris_feature = "the length of sepal", "the width of sepal", "the length of petal", "the width of petal"
        iris_class = "Iris-setosa", "Iris-versicolor", "Iris-virginica"
        
        data = pd.read_csv("iris.data", header=None)
        iris_types = data[4].unique()
        for i, type in enumerate(iris_types):
            data.set_value(data[4] == type, 4, i)
        x, y = np.split(data.values, (4,), axis=1)
        x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.7, random_state=1)
        print(y_test)
     
        model = DecisionTreeClassifier(criterion='entropy', max_depth=6)
        model = model.fit(x_train, y_train)
        y_test_hat = model.predict(x_test)
        with open('iris.dot', 'w') as f:
            tree.export_graphviz(model, out_file=f)
        dot_data = tree.export_graphviz(model, out_file=None, feature_names=iris_feature_E, class_names=iris_class,
            filled=True, rounded=True, special_characters=True)
        graph = pydotplus.graph_from_dot_data(dot_data)
        graph.write_pdf('iris.pdf')
        f = open('iris.png', 'wb')
        f.write(graph.create_png())
        f.close()
     
        # 画图
        # 横纵各采样多少个值
        N, M = 50, 50
        # 第0列的范围
        x1_min, x1_max = x[:, 0].min(), x[:, 0].max()
        # 第1列的范围
        x2_min, x2_max = x[:, 1].min(), x[:, 1].max()
        t1 = np.linspace(x1_min, x1_max, N)
        t2 = np.linspace(x2_min, x2_max, M)
        # 生成网格采样点
        x1, x2 = np.meshgrid(t1, t2)
        # # 无意义,只是为了凑另外两个维度
        # # 打开该注释前,确保注释掉x = x[:, :2]
        x3 = np.ones(x1.size) * np.average(x[:, 2])
        x4 = np.ones(x1.size) * np.average(x[:, 3])
        # 测试点
        x_show = np.stack((x1.flat, x2.flat, x3, x4), axis=1)
        print("x_show_shape:\n", x_show.shape)
     
        cm_light = mpl.colors.ListedColormap(['#77E0A0', '#FF8080', '#A0A0FF'])
        cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
        # 预测值
        y_show_hat = model.predict(x_show)
        print(y_show_hat.shape)
        print(y_show_hat)
        # 使之与输入的形状相同
        y_show_hat = y_show_hat.reshape(x1.shape)
        print(y_show_hat)
        plt.figure(figsize=(15, 15), facecolor='w')
        # 预测值的显示
        plt.pcolormesh(x1, x2, y_show_hat, cmap=cm_light)
        print(y_test)
        print(y_test.ravel())
        # 测试数据
        plt.scatter(x_test[:, 0], x_test[:, 1], c=np.squeeze(y_test), edgecolors='k', s=120, cmap=cm_dark, marker='*')
        # 全部数据
        plt.scatter(x[:, 0], x[:, 1], c=np.squeeze(y), edgecolors='k', s=40, cmap=cm_dark)
        plt.xlabel(iris_feature[0], fontsize=15)
        plt.ylabel(iris_feature[1], fontsize=15)
        plt.xlim(x1_min, x1_max)
        plt.ylim(x2_min, x2_max)
        plt.grid(True)
        plt.title('yuanwei flowers regressiong with DecisionTree', fontsize=17)
        plt.show()
     
        # 训练集上的预测结果
        y_test = y_test.reshape(-1)
        print(y_test_hat)
        print(y_test)
        # True则预测正确,False则预测错误
        result = (y_test_hat == y_test)
        acc = np.mean(result)
        print('accuracy: %.2f%%' % (100 * acc))
     
        # 过拟合:错误率
        depth = np.arange(1, 15)
        err_list = []
        for d in depth:
            clf = DecisionTreeClassifier(criterion='entropy', max_depth=d)
            clf = clf.fit(x_train, y_train)
            # 测试数据
            y_test_hat = clf.predict(x_test)
            # True则预测正确,False则预测错误
            result = (y_test_hat == y_test)
            err = 1 - np.mean(result)
            err_list.append(err)
            print(d, 'error ratio: %.2f%%' % (100 * err))
        plt.figure(figsize=(15, 15), facecolor='w')
        plt.plot(depth, err_list, 'ro-', lw=2)
        plt.xlabel('DecisionTree Depth', fontsize=15)
        plt.ylabel('error ratio', fontsize=15)
        plt.title('DecisionTree Depth and Overfit', fontsize=17)
        plt.grid(True)
        plt.show()
    
    image.png
    image.png
    image.png

    生成的图文件:


    image.png

    鸢尾花的数据特征一共有四种:花萼长度、花萼宽度,花瓣长度,花瓣宽度。然后再使用决策树两两特征进行分类:

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    from sklearn import tree
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.pipeline import Pipeline
    import pydotplus
     
    if __name__ == "__main__":
       
        iris_feature_E = "sepal lenght", "sepal width", "petal length", "petal width"
        iris_feature = "the length of sepal", "the width of sepal", "the length of petal", "the width of petal"
        iris_class = "Iris-setosa", "Iris-versicolor", "Iris-virginica"
        
        data = pd.read_csv("iris.data", header=None)
        iris_types = data[4].unique()
        for i, type in enumerate(iris_types):
            data.set_value(data[4] == type, 4, i)
        x_train, y = np.split(data.values, (4,), axis=1)
     
        feature_pairs = [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
        plt.figure(figsize=(15, 15), facecolor='w')
        for i, pair in enumerate(feature_pairs):
            # 准备数据
            x = x_train[:, pair]
            # 决策树进行学习
            clf = DecisionTreeClassifier(criterion='entropy', min_samples_leaf=3)
            dt_clf = clf.fit(x, y)
            # 开始画图
            N, M = 500, 500
            # 第0列的范围
            x1_min, x1_max = x[:, 0].min(), x[:, 0].max()   
            # 第1列的范围
            x2_min, x2_max = x[:, 1].min(), x[:, 1].max()   
            t1 = np.linspace(x1_min, x1_max, N)
            t2 = np.linspace(x2_min, x2_max, M)
            # 生成网格采样点
            x1, x2 = np.meshgrid(t1, t2)           
            # 测试点         
            x_test = np.stack((x1.flat, x2.flat), axis=1)
            # 在训练集上预测结果
            y_hat = dt_clf.predict(x)
            y = y.reshape(-1)
            # 统计预测正确的个数
            c = np.count_nonzero(y_hat == y)
            print("y_hat:\n", y_hat)
            print("y:\n", y)
            '''
            set1 = set(y_hat)
            set2 = set(y)
            print(list(set1 & set2))
            if y_hat.any() != y.any():
                print('predict:%.3f   real:%.3f' %(y_hat.all(), y.all()))
            '''
            # 打印相关信息
            print('features:\t', iris_feature[pair[0]], ' + ', iris_feature[pair[1]])
            print('the number of true prediction:', c)
            print('acc:%.2f%%' %(100 * float(c) / float(len(y))))
     
            # 画图显示
            cm_light = mpl.colors.ListedColormap(['#77E0A0', '#FF8080', '#A0A0FF'])
            cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
            # 预测值
            y_test_hat = dt_clf.predict(x_test)
            # reshape到和输入的x1相同格式
            y_test_hat = y_test_hat.reshape(x1.shape)
            plt.subplot(2, 3, i+1)
            plt.pcolormesh(x1, x2, y_test_hat, cmap=cm_light)
            plt.scatter(x[:, 0], x[:, 1], c=y, edgecolors='k', cmap=cm_dark)
            plt.xlabel(iris_feature[pair[0]], fontsize=14)
            plt.ylabel(iris_feature[pair[1]], fontsize=14)
            plt.xlim(x1_min, x1_max)
            plt.ylim(x2_min, x2_max)
            plt.grid()
        plt.suptitle('the result of yuanwei flowers in each two features with dcisiontree', fontsize=20)
        plt.tight_layout(2)
        plt.subplots_adjust(top=0.92)
        plt.show()
    
    image.png
    image.png

    显然第二种组合效果还可以的。
    接着我们使用随机森林算法来分类看看效果:

    只需要在上面的代码中修改:

    # 决策树进行学习
    clf = DecisionTreeRegressor(n_estimators=200, criterion='entropy', max_depth=6)
    

    为:

    # 决策树进行学习
    clf = RandomForestClassifier(n_estimators=200, criterion='entropy', max_depth=6)
    

    效果:


    image.png
    image.png

    看得出来随机森林的分类要比决策树好,随机森林因为是根据多个决策树弱分类器联合成一个强分类器,所以其边界出呈现很多的锯齿,分类的准确度也提高很多,150个数据,最后只有一个分错。

    相关文章

      网友评论

        本文标题:机器学习基础算法之决策树和随机森林比较(实现鸢尾花数据集分析)

        本文链接:https://www.haomeiwen.com/subject/krvcwqtx.html