美文网首页
Metal每日分享,颜色转换滤镜效果

Metal每日分享,颜色转换滤镜效果

作者: 弹吉他的少年 | 来源:发表于2022-11-22 08:59 被阅读0次

    本案例的目的是理解如何用Metal实现像素颜色转换滤镜,通过对像素颜色的不同读取方式获取到相应像素颜色,灰度图移除场景中除了黑白灰以外所有的颜色,让整个图像灰度化;

    效果图

    WX20221121-165812.png

    实操代码

    // 转成灰度图滤镜
    let filter = C7ColorConvert(with: .gray)
    
    // 方案1:
    let dest = BoxxIO.init(element: originImage, filter: filter)
    ImageView.image = try? dest.output()
    
    dest.filters.forEach {
        NSLog("%@", "\($0.parameterDescription)")
    }
    
    // 方案2:
    ImageView.image = try? originImage.make(filter: filter)
    
    // 方案3:
    ImageView.image = originImage ->> filter
    

    实现原理

    • 过滤器

    这款滤镜采用并行计算编码器设计.compute(kernel: "C7ColorConvert")

    /// 颜色通道`RGB`位置转换
    public struct C7ColorConvert: C7FilterProtocol {
        
        public enum ColorType: String, CaseIterable {
            case invert = "C7ColorInvert"
            case gray = "C7Color2Gray"
            case bgra = "C7Color2BGRA"
            case brga = "C7Color2BRGA"
            case gbra = "C7Color2GBRA"
            case grba = "C7Color2GRBA"
            case rbga = "C7Color2RBGA"
        }
        
        private let type: ColorType
        
        public var modifier: Modifier {
            return .compute(kernel: type.rawValue)
        }
        
        public init(with type: ColorType) {
            self.type = type
        }
    }
    
    • 着色器

    取出像素rgb值,然后根据对应像素颜色;灰度图则是取所有的颜色分量,将它们加权或平均;

    // 颜色反转,1 - rgb
    kernel void C7ColorInvert(texture2d<half, access::write> outputTexture [[texture(0)]],
                              texture2d<half, access::read> inputTexture [[texture(1)]],
                              uint2 grid [[thread_position_in_grid]]) {
        const half4 inColor = inputTexture.read(grid);
        
        const half4 outColor(1.0h - inColor.rgb, inColor.a);
        
        outputTexture.write(outColor, grid);
    }
    
    // 转灰度图
    kernel void C7Color2Gray(texture2d<half, access::write> outputTexture [[texture(0)]],
                             texture2d<half, access::read> inputTexture [[texture(1)]],
                             uint2 grid [[thread_position_in_grid]]) {
        const half4 inColor = inputTexture.read(grid);
        
        const half3 kRec709Luma = half3(0.2126, 0.7152, 0.0722);
        const half gray = dot(inColor.rgb, kRec709Luma);
        const half4 outColor = half4(half3(gray), 1.0h);
        
        outputTexture.write(outColor, grid);
    }
    
    kernel void C7Color2BGRA(texture2d<half, access::write> outputTexture [[texture(0)]],
                             texture2d<half, access::read> inputTexture [[texture(1)]],
                             uint2 grid [[thread_position_in_grid]]) {
        const half4 inColor = inputTexture.read(grid);
        
        const half4 outColor(inColor.bgr, inColor.a);
        
        outputTexture.write(outColor, grid);
    }
    
    kernel void C7Color2BRGA(texture2d<half, access::write> outputTexture [[texture(0)]],
                             texture2d<half, access::read> inputTexture [[texture(1)]],
                             uint2 grid [[thread_position_in_grid]]) {
        const half4 inColor = inputTexture.read(grid);
        
        const half4 outColor(inColor.brg, inColor.a);
        
        outputTexture.write(outColor, grid);
    }
    
    kernel void C7Color2GBRA(texture2d<half, access::write> outputTexture [[texture(0)]],
                             texture2d<half, access::read> inputTexture [[texture(1)]],
                             uint2 grid [[thread_position_in_grid]]) {
        const half4 inColor = inputTexture.read(grid);
        
        const half4 outColor(inColor.gbr, inColor.a);
        
        outputTexture.write(outColor, grid);
    }
    
    kernel void C7Color2GRBA(texture2d<half, access::write> outputTexture [[texture(0)]],
                             texture2d<half, access::read> inputTexture [[texture(1)]],
                             uint2 grid [[thread_position_in_grid]]) {
        const half4 inColor = inputTexture.read(grid);
        
        const half4 outColor(inColor.grb, inColor.a);
        
        outputTexture.write(outColor, grid);
    }
    
    kernel void C7Color2RBGA(texture2d<half, access::write> outputTexture [[texture(0)]],
                             texture2d<half, access::read> inputTexture [[texture(1)]],
                             uint2 grid [[thread_position_in_grid]]) {
        const half4 inColor = inputTexture.read(grid);
        
        const half4 outColor(inColor.rbg, inColor.a);
        
        outputTexture.write(outColor, grid);
    }
    

    多滤镜联动

    <p align="left">
    <img src="https://p9-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/ae83280ff32340a889d7d4a61d0af8f6~tplv-k3u1fbpfcp-zoom-in-crop-mark:1304:0:0:0.awebp" width="250" hspace="1px">
    </p>

    • 运算符链式处理
    /// 1.转换成BGRA
    let filter1 = C7ColorConvert(with: C7ColorConvert.ColorType.bgra)
    
    /// 2.调整颗粒度
    var filter2 = C7Granularity()
    filter2.grain = 0.8
    
    /// 3.调整白平衡
    var filter3 = C7WhiteBalance()
    filter3.temperature = 5555
    
    /// 4.调整高光阴影
    var filter4 = C7HighlightShadow()
    filter4.shadows = 0.4
    filter4.highlights = 0.5
    
    /// 5.组合操作,获取结果
    filterImageView.image = originImage ->> filter1 ->> filter2 ->> filter3 ->> filter4
    

    <p align="left">
    <img src="https://p9-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/6f454038a958434da8bc26fc3aa1486a~tplv-k3u1fbpfcp-zoom-in-crop-mark:1304:0:0:0.awebp" width="250" hspace="1px">
    </p>

    • 组合操作
    /// 1.转换成RBGA
    let filter1 = C7ColorConvert(with: C7ColorConvert.ColorType.rbga)
    
    /// 2.调整颗粒度
    var filter2 = C7Granularity()
    filter2.grain = 0.8
    
    /// 3.配置灵魂效果
    var filter3 = C7SoulOut()
    filter3.soul = 0.7
    
    /// 4.组合操作
    let group: [C7FilterProtocol] = [filter1, filter2, filter3]
    
    /// 5.获取结果
    filterImageView.image = try? originImage.makeGroup(filters: group)
    

    Harbeth功能清单

    • 支持ios系统和macOS系统
    • 支持运算符函数式操作
    • 支持多种模式数据源 UIImage, CIImage, CGImage, CMSampleBuffer, CVPixelBuffer.
    • 支持快速设计滤镜
    • 支持合并多种滤镜效果
    • 支持输出源的快速扩展
    • 支持相机采集特效
    • 支持视频添加滤镜特效
    • 支持矩阵卷积
    • 支持使用系统 MetalPerformanceShaders.
    • 支持兼容 CoreImage.
    • 滤镜部分大致分为以下几个模块:
      • Blend:图像融合技术
      • Blur:模糊效果
      • Pixel:图像的基本像素颜色处理
      • Effect:效果处理
      • Lookup:查找表过滤器
      • Matrix: 矩阵卷积滤波器
      • Shape:图像形状大小相关
      • Visual: 视觉动态特效
      • MPS: 系统 MetalPerformanceShaders.

    最后

    • 关于颜色转换滤镜介绍与设计到此为止吧。
    • 慢慢再补充其他相关滤镜,喜欢就给我点个星🌟吧。
    • 滤镜Demo地址,目前包含100+种滤镜,同时也支持CoreImage混合使用。
    • 再附上一个开发加速库KJCategoriesDemo地址
    • 再附上一个网络基础库RxNetworksDemo地址
    • 喜欢的老板们可以点个星🌟,谢谢各位老板!!!

    ✌️.

    相关文章

      网友评论

          本文标题:Metal每日分享,颜色转换滤镜效果

          本文链接:https://www.haomeiwen.com/subject/ksigxdtx.html