美文网首页
关键词提取

关键词提取

作者: Shira0905 | 来源:发表于2017-06-04 14:05 被阅读0次

提到从文本中提取关键词,我们第一想到的肯定是通过计算词语的 TF-IDF 值来完成,简单又粗暴。但是由于 TF-IDF 的结构过于简单,有时提取关键词的效果会很不理想。
本文将介绍一个由 Google 著名的网页排序算法 PageRank 改编而来的算法——TextRank,它利用图模型来提取文章中的关键词。
TextRank原论文下载地址:TextRank: Bringing Order into Texts

PageRank##

PageRank 是一种通过网页之间的超链接来计算网页重要性的技术,以 Google 创办人 Larry Page 之姓来命名,Google 用它来体现网页的相关性和重要性。PageRank 通过网络浩瀚的超链接关系来确定一个页面的等级,把从 A 页面到 B 页面的链接解释为 A 页面给 B 页面投票,Google 根据 A 页面(甚至链接到 A 的页面)的等级和投票目标的等级来决定 B 的等级。简单的说,一个高等级的页面可以使其他低等级页面的等级提升。
整个互联网可以看作是一张有向图图,网页是图中的节点,网页之间的链接就是图中的边。如果网页 A 存在到网页 B 的链接,那么就有一条从网页 A 指向网页 B 的有向边。
构造完图后,使用下面的公式来计算网页 i的重要性(PR值):

image.png

使用 TextRank 提取关键词##

image.png

现在是要提取关键词,如果把单词视作图中的节点(即把单词看成句子),那么所有边的权值都为 0(两个单词没有相似性),所以通常简单地把所有的权值都设为 1。此时算法退化为 PageRank,因而把关键字提取算法称为 PageRank 也不为过。
我们把文本拆分为单词,过滤掉停用词(可选),并只保留指定词性的单词(可选),就得到了单词的集合。假设一段文本依次由下面的单词组成:

image.png

现在将每个单词作为图中的一个节点,同一个窗口中的任意两个单词对应的节点之间存在着一条边。然后利用投票的原理,将边看成是单词之间的互相投票,经过不断迭代,每个单词的得票数都会趋于稳定。一个单词的得票数越多,就认为这个单词越重要。

例如要从下面的文本中提取关键词:

程序员(英文Programmer)是从事程序开发、维护的专业人员。一般将程序员分为程序设计人员和程序编码人员,但两者的界限并不非常清楚,特别是在中国。软件从业人员分为初级程序员、高级程序员、系统分析员和项目经理四大类。

对这句话分词,去掉里面的停用词,然后保留词性为名词、动词、形容词、副词的单词。得出实际有用的词语:

程序员, 英文, 程序, 开发, 维护, 专业, 人员, 程序员, 分为, 程序, 设计, 人员, 程序, 编码, 人员, 界限, 特别, 中国, 软件, 人员, 分为, 程序员, 高级, 程序员, 系统, 分析员, 项目, 经理

现在建立一个大小为 9 的窗口,即相当于每个单词要将票投给它身前身后距离 5 以内的单词:

开发=[专业, 程序员, 维护, 英文, 程序, 人员]
软件=[程序员, 分为, 界限, 高级, 中国, 特别, 人员]
程序员=[开发, 软件, 分析员, 维护, 系统, 项目, 经理, 分为, 英文, 程序, 专业, 设计, 高级, 人员, 中国]
分析员=[程序员, 系统, 项目, 经理, 高级]
维护=[专业, 开发, 程序员, 分为, 英文, 程序, 人员]
系统=[程序员, 分析员, 项目, 经理, 分为, 高级]
项目=[程序员, 分析员, 系统, 经理, 高级]
经理=[程序员, 分析员, 系统, 项目]
分为=[专业, 软件, 设计, 程序员, 维护, 系统, 高级, 程序, 中国, 特别, 人员]
英文=[专业, 开发, 程序员, 维护, 程序]
程序=[专业, 开发, 设计, 程序员, 编码, 维护, 界限, 分为, 英文, 特别, 人员]
特别=[软件, 编码, 分为, 界限, 程序, 中国, 人员]
专业=[开发, 程序员, 维护, 分为, 英文, 程序, 人员]
设计=[程序员, 编码, 分为, 程序, 人员]
编码=[设计, 界限, 程序, 中国, 特别, 人员]
界限=[软件, 编码, 程序, 中国, 特别, 人员]
高级=[程序员, 软件, 分析员, 系统, 项目, 分为, 人员]
中国=[程序员, 软件, 编码, 分为, 界限, 特别, 人员]
人员=[开发, 程序员, 软件, 维护, 分为, 程序, 特别, 专业, 设计, 编码, 界限, 高级, 中国]

然后开始迭代投票,直至收敛:

程序员=1.9249977,
人员=1.6290349,
分为=1.4027836,
程序=1.4025855,
高级=0.9747374,
软件=0.93525416,
中国=0.93414587,
特别=0.93352026,
维护=0.9321688,
专业=0.9321688,
系统=0.885048,
编码=0.82671607,
界限=0.82206935,
开发=0.82074183,
分析员=0.77101076,
项目=0.77101076,
英文=0.7098714,
设计=0.6992446,
经理=0.64640945

可以看到“程序员”的得票数最多,因而它是整段文本最重要的单词。我们将文本中得票数多的若干单词作为该段文本的关键词,若多个关键词相邻,这些关键词还可以构成关键短语。

相关文章

网友评论

      本文标题:关键词提取

      本文链接:https://www.haomeiwen.com/subject/kubvfxtx.html