美文网首页
机器学习2-k近邻算法

机器学习2-k近邻算法

作者: Re0 | 来源:发表于2018-08-10 10:20 被阅读0次

近朱者赤近墨者黑

概述

  • 输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类。假设给定一个训练数据集,其中的实例类别已定。分类时,对新的实例,根据其 k 个最近邻的训练实例的类别,通过多数表决等方式进行预测,不具有显式的学习过程。
  • k 近邻算法实际上利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”。 k值的选择、距离度量以及分类决策规则是k近邻算法的三个基本要素。

工作原理

knn算法步骤

  1. 假设有一个带有标签的样本数据集(训练样本集),其中包含每条数据与所属分类的对应关系。
  2. 输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较。
    • 计算新数据与样本数据集中每条数据的距离。
    • 对求得的所有距离进行排序(从小到大,越小表示越相似)。
    • 取前 k (k 一般小于等于 20 )个样本数据对应的分类标签。
  3. 求 k 个数据中出现次数最多的分类标签作为新数据的分类。
class KNN():
    """ K Nearest Neighbors classifier.

    Parameters:
    -----------
    k: int
        The number of closest neighbors that will determine the class of the
        sample that we wish to predict.
    """
    def __init__(self, k=5):
        self.k = k

    def _vote(self, neighbor_labels):
        """ Return the most common class among the neighbor samples """
        counts = np.bincount(neighbor_labels.astype('int'))
        return counts.argmax()

    def predict(self, X_test, X_train, y_train):
        y_pred = np.empty(X_test.shape[0])
        # Determine the class of each sample
        for i, test_sample in enumerate(X_test):
            # Sort the training samples by their distance to the test sample and get the K nearest
            idx = np.argsort([euclidean_distance(test_sample, x) for x in X_train])[:self.k]
            # Extract the labels of the K nearest neighboring training samples
            k_nearest_neighbors = np.array([y_train[i] for i in idx])
            # Label sample as the most common class label
            y_pred[i] = self._vote(k_nearest_neighbors)

        return y_pred

knn算法特点

优点:精度高、对异常值不敏感、无数据输入假定
缺点:计算复杂度高、空间复杂度高
适用数据范围:数值型和标称型

sklearn实现

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets

n_neighbors = 3

# 导入一些要玩的数据
iris = datasets.load_iris()
X = iris.data[:, :2]  # 我们只采用前两个feature. 我们可以使用二维数据集避免这个丑陋的切片
y = iris.target

h = .02  # 网格中的步长

# 创建彩色的图
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])

for weights in ['uniform', 'distance']:
    # 我们创建了一个knn分类器的实例,并拟合数据。
    clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
    clf.fit(X, y)

    # 绘制决策边界。为此,我们将为每个分配一个颜色
    # 来绘制网格中的点 [x_min, x_max]x[y_min, y_max].
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
    # flatten, 按列拼接
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

    # 将结果放入一个彩色图中
    Z = Z.reshape(xx.shape)
    plt.figure()
    # 预测meshgrid的类别(颜色)
    plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

    # 绘制训练点
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.title("3-Class classification (k = %i, weights = '%s')"
              % (n_neighbors, weights))
plt.show()

相关文章

  • 机器学习2-k近邻算法

    近朱者赤近墨者黑 概述 输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类。假设给定一个训练数...

  • 机器学习算法-KNN算法

    机器学习算法-K近邻算法 本文中介绍的机器学习中最基础的一个算法:k-近邻算法,将从如下方面展开: 算法概述 k近...

  • 机器学习实战之K-近邻算法(二)

    机器学习实战之K-近邻算法(二) 2-1 K-近邻算法概述 简单的说,K-近邻算法采用测量不同特征值之间的距离方法...

  • 机器学习实战笔记 1)K-近邻算法:理论篇

    近邻算法K-近邻算法是机器学习分类算法中最简单的方法之一。在讲清楚K-近邻算法之前,我们先来看看它的一个简化版--...

  • kNN算法

    一. kNN算法 kNN(k-NearestNeighbor),即k最近邻算法,是机器学习算法中最基础的入门算法。...

  • 机器学习实战

    机器学习实战 [tag]人工智能,机器学习,可视化,数据分析,k近邻,python,监督机器学习算法, [cont...

  • k近邻算法

    1、k近邻简介 1-1、算法思路 k近邻(K-Nearest Neighbor)可能是最简单的机器学习算法,它基于...

  • Machine Learning: 十大机器学习算法

    机器学习算法分类:监督学习、无监督学习、强化学习 基本的机器学习算法:线性回归、支持向量机(SVM)、最近邻居(K...

  • Machine Learning: 十大机器学习算法

    机器学习算法分类:监督学习、无监督学习、强化学习 基本的机器学习算法:线性回归、支持向量机(SVM)、最近邻居(K...

  • 机器学习实战(MACHINE LEARNING IN ACTIO

    kNN(k近邻)方法在《机器学习实战》这本书里是最先介绍的算法,估计也是最简单的了。。。k-近邻算法(kNN)工作...

网友评论

      本文标题:机器学习2-k近邻算法

      本文链接:https://www.haomeiwen.com/subject/kwckbftx.html