美文网首页
【非凸优化】Provable Nonconvex Methods

【非凸优化】Provable Nonconvex Methods

作者: hzyido | 来源:发表于2015-10-07 20:55 被阅读476次

Provable Nonconvex Methods/Algorithms

JUN 18TH, 2014

General nonconvex optimization is undoubtedly hard – in sharp contrast to convex optimization, of which there is good separation of problem structure, input data, and optimization algorithms. But many nonconvex problems of interest become amenable to simple and practical algorithms and rigorous analyses once the artificial separation is removed. This page collects recent research effort in this line. (Update: Oct 06 2015)

Problems with Hidden Convexity or Analytic Solutions

These slidessummarize lots of them.

Blind Deconvolution

Blind Deconvolution using Convex Programming(2012)

Separable Nonnegative Matrix Factorization (NMF)

Computing a Nonnegative Matrix Factorization – Provably(2011)

Problems with Provable Global Results

Matrix Completion/Sensing

(See alsolow-rank matrix/tensor recovery)

Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees(2015)

Low-rank Solutions of Linear Matrix Equations via Procrustes Flow(2015)

A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements(2015)

Guaranteed Matrix Completion via Non-convex Factorization(2014)

Fast Exact Matrix Completion with Finite Samples(2014)

Non-convex Robust PCA(2014)

Fast Matrix Completion without the Condition Number(2014)

Understanding Alternating Minimization for Matrix Completion(2013)

Low-rank Matrix Completion using Alternating Minimization(2012)

Matrix Completion from a Few Entries(2009)

Guaranteed Rank Minimization via Singular Value Projection(2009)

Tensor Recovery & Hidden Variable Models

Analyzing Tensor Power Method Dynamics: Applications to Learning Overcomplete Latent Variable Models(2014)

Tensor decompositions for learning latent variable models(2014)

Provable Learning of Overcomplete Latent Variable Models: Semi-supervised and Unsupervised Settings(2014)

Provable Tensor Factorization with Missing Data(2014)

Guaranteed Non-Orthogonal Tensor Decomposition via Alternating Rank-1 Updates(2014)

Phase Retrieval

The Local Convexity of Solving Quadratic Equations(2015)

Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems(2015)

Phase Retrieval via Wirtinger Flow: Theory and Algorithms(2014)

Phase Retrieval using Alternating Minimization(2013)

Dictionary Learning

Complete Dictionary Recovery over the Sphere(2015)

Simple, Efficient, and Neural Algorithms for Sparse Coding(2015)

More Algorithms for Provable Dictionary Learning(2014)

Exact Recovery of Sparsely Used Overcomplete Dictionaries(2013)

New Algorithms for Learning Incoherent and Overcomplete Dictionaries(2013)

Learning Sparsely Used Overcomplete Dictionaries via Alternating Minimization(2013)

Sparse Vectors in Linear Subspaces

(See alsoStructured Element Pursuit)

Nonnegative/Sparse Principal Component Analysis

Non-negative Principal Component Analysis: Message Passing Algorithms and Sharp Asymptotics(2014)

Mixed Linear Regression

Provable Tensor Methods for Learning Mixtures of Classifiers(2014)

Alternating Minimization for Mixed Linear Regression(2013)

Blind Deconvolution

Near Optimal Compressed Sensing of Sparse Rank-One Matrices via Sparse Power Factorization(2013)

Numerical Linear Algebra

Computing Matrix Squareroot via Non Convex Local Search(2015)

Bayesian Inference

On some provably correct cases of variational inference for topic models(2015)

Burer-Monteiro Style Decomposition Algorithms

Global Convergence of Stochastic Gradient Descent for Some Nonconvex Matrix Problems(2014)

Of Statistical Nature …

Provable Sparse Tensor Decomposition(2015)

Statistical consistency and asymptotic normality for high-dimensional robust M-estimators(2015)

Support recovery without incoherence: A case for nonconvex regularizations(2014)

High Dimensional Expectation-Maximization Algorithm: Statistical Optimization and Asymptotic Normality(2014)

Statistical guarantees for the EM algorithm: From population to sample-based analysis(2014)

Nonconvex Statistical Optimization: Minimax-Optimal Sparse PCA in Polynomial Time(2014)

Regularized M-estimators with nonconvexity: Statistical and algorithmic theory for local optima(2013)

High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity(2011)

Relevant Tools/Local Results

Escaping From Saddle Points — Online Stochastic Gradient for Tensor Decomposition(2015)

Proximal alternating linearized minimization for nonconvex and nonsmooth problems(2013)

Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods(2013)

Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Łojasiewicz inequality(2008)

Disclaimer- This page is meant to serve a hub for references on this problem, and does not represent in any way personal endorsement of papers listed here. So I do not hold any responsibility for quality and technical correctness of each paper listed here. The reader is advised to use this resource with discretion.

If you’d like your paper to be listed here- Just drop me a few lines via email (which can be found on “Welcome” page). If you don’t bother to spend a word, just deposit your paper on arXiv. I get email alert about new animals there every morning,  and will be happy to hunt one for this zoo if it seemsfit.

Jun 18th, 2014

相关文章

  • 【非凸优化】Provable Nonconvex Methods

    Provable Nonconvex Methods/Algorithms JUN 18TH, 2014 Gene...

  • 凸优化&非凸优化

    凸优化指的是,如果得到了局部最优,那么这个局部最优就是全局最优。 讲凸优化就涉及到凸函数和凸集合集合C内任意两点间...

  • 电力系统优化算法

    电力系统优化算法实际应用介绍 优化问题可以分成凸(convex)问题和非凸问题。凸问题都是可以找到最优解的,只是算...

  • 凸优化笔记2-主要内容

    笔记主要内容 凸集、凸函数、凸优化 凸优化理论 若干算法

  • 机器学习(6)——凸优化理论(一)

    概述   凸优化,或叫做凸最优化,凸最小化,是数学最优化的一个子领域,研究定义于凸集中的凸函数最小化的问题。凸优化...

  • Convex Optimization Note 1 | Int

    凸优化,或叫做凸最优化,凸最小化,是数学最优化的一个子领域,研究定义于凸集中的凸函数最小化的问题。凸优化在某种意义...

  • 凸优化有什么用

    本文结构: 凸优化有什么用? 什么是凸优化? 凸优化有什么用? 鉴于本文中公式比较多,先把凸优化的意义写出来吧,就...

  • 凸优化相关概念学习笔记

    前言 由于凸优化具有一些很好的性质,比如: 凸问题中的局部最优解就是全局最优解 凸优化理论中的拉格朗日对偶为凸优化...

  • Convex Set and Convex Function凸集

    Welcome To My Blog Rockafeller说:"优化问题的分水岭不是线性和非线性,而是凸性和非...

  • 9,10凸函数的定义和拓展

    定义一:为凸 为凸且有定义二:为凸,定义三:若可微,即梯度在上均存在,则为凸等价于为凸且 拓展:凸非凸非凹

网友评论

      本文标题:【非凸优化】Provable Nonconvex Methods

      本文链接:https://www.haomeiwen.com/subject/kwhncttx.html