美文网首页
Tiny-yolo网络修改记录

Tiny-yolo网络修改记录

作者: myth_0c21 | 来源:发表于2017-09-19 14:12 被阅读0次

    本文主要记录训练一类网络,修改网络参数,引起网络性能的变化

    0.最原始的tiny-yolo

    • 网络结构如下
    [net]
    #test
    batch=1
    subdivisions=1
    #train
    
    #batch=64
    #subdivisions=4
    
    
    width=416
    height=416
    channels=3
    momentum=0.9
    decay=0.0005
    angle=0
    saturation = 1.5
    exposure = 1.5
    hue=.1
    
    learning_rate=0.001
    max_batches = 40200
    policy=steps
    steps=-1,100,20000,30000
    scales=.1,10,.1,.1
    
    [convolutional]
    batch_normalize=1
    filters=16
    size=3
    stride=1
    pad=1
    activation=leaky
    
    [maxpool]
    size=2
    stride=2
    
    [convolutional]
    batch_normalize=1
    filters=32
    size=3
    stride=1
    pad=1
    activation=leaky
    
    [maxpool]
    size=2
    stride=2
    
    [convolutional]
    batch_normalize=1
    filters=64
    size=3
    stride=1
    pad=1
    activation=leaky
    
    [maxpool]
    size=2
    stride=2
    
    [convolutional]
    batch_normalize=1
    filters=128
    size=3
    stride=1
    pad=1
    activation=leaky
    
    [maxpool]
    size=2
    stride=2
    
    [convolutional]
    batch_normalize=1
    filters=256
    size=3
    stride=1
    pad=1
    activation=leaky
    
    [maxpool]
    size=2
    stride=2
    
    [convolutional]
    batch_normalize=1
    filters=512
    size=3
    stride=1
    pad=1
    activation=leaky
    
    [maxpool]
    size=2
    stride=1
    
    [convolutional]
    batch_normalize=1
    filters=1024
    size=3
    stride=1
    pad=1
    activation=leaky
    
    ###########
    
    [convolutional]
    batch_normalize=1
    size=3
    stride=1
    pad=1
    filters=1024
    activation=leaky
    
    [convolutional]
    size=1
    stride=1
    pad=1
    filters=30
    activation=linear
    
    [region]
    anchors = 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52
    bias_match=1
    classes=1
    coords=4
    num=5
    softmax=1
    jitter=.2
    rescore=1
    
    object_scale=5
    noobject_scale=1
    class_scale=1
    coord_scale=1
    
    absolute=1
    thresh = .6
    random=1
    
    • Evaluate Recall
      252   656   690       RPs/Img: 21.57  IOU: 75.29%     Recall:95.07%
      253   658   692       RPs/Img: 21.50  IOU: 75.30%     Recall:95.09%
      254   660   694       RPs/Img: 21.50  IOU: 75.33%     Recall:95.10%
      255   663   697       RPs/Img: 21.43  IOU: 75.40%     Recall:95.12%
      256   663   697       RPs/Img: 21.41  IOU: 75.40%     Recall:95.12%
      257   663   697       RPs/Img: 21.38  IOU: 75.40%     Recall:95.12%
      258   665   699       RPs/Img: 21.36  IOU: 75.41%     Recall:95.14%
      259   667   701       RPs/Img: 21.35  IOU: 75.40%     Recall:95.15%
      260   669   703       RPs/Img: 21.33  IOU: 75.42%     Recall:95.16%
      261   671   705       RPs/Img: 21.31  IOU: 75.42%     Recall:95.18%
      262   673   707       RPs/Img: 21.33  IOU: 75.43%     Recall:95.19%
      263   673   707       RPs/Img: 21.32  IOU: 75.43%     Recall:95.19%
      264   673   707       RPs/Img: 21.35  IOU: 75.43%     Recall:95.19%
      265   675   709       RPs/Img: 21.31  IOU: 75.43%     Recall:95.20%
      266   676   710       RPs/Img: 21.27  IOU: 75.41%     Recall:95.21%
      267   678   712       RPs/Img: 21.25  IOU: 75.41%     Recall:95.22%
      268   682   716       RPs/Img: 21.25  IOU: 75.44%     Recall:95.25%
      269   683   717       RPs/Img: 21.22  IOU: 75.44%     Recall:95.26%
      270   685   719       RPs/Img: 21.25  IOU: 75.46%     Recall:95.27%
      271   687   721       RPs/Img: 21.22  IOU: 75.48%     Recall:95.28%
      272   689   723       RPs/Img: 21.21  IOU: 75.47%     Recall:95.30%
      273   689   723       RPs/Img: 21.25  IOU: 75.47%     Recall:95.30%
      274   691   725       RPs/Img: 21.24  IOU: 75.50%     Recall:95.31%
      275   691   725       RPs/Img: 21.32  IOU: 75.50%     Recall:95.31%
      276   691   725       RPs/Img: 21.36  IOU: 75.50%     Recall:95.31%
      277   692   726       RPs/Img: 21.35  IOU: 75.52%     Recall:95.32%
      278   694   728       RPs/Img: 21.37  IOU: 75.50%     Recall:95.33%
      279   696   730       RPs/Img: 21.37  IOU: 75.51%     Recall:95.34%
      280   699   734       RPs/Img: 21.37  IOU: 75.46%     Recall:95.23%
      281   702   738       RPs/Img: 21.39  IOU: 75.37%     Recall:95.12%
      282   704   740       RPs/Img: 21.41  IOU: 75.37%     Recall:95.14%
      283   706   742       RPs/Img: 21.41  IOU: 75.41%     Recall:95.15%
      284   706   742       RPs/Img: 21.40  IOU: 75.41%     Recall:95.15%
      285   708   744       RPs/Img: 21.37  IOU: 75.41%     Recall:95.16%
      286   708   744       RPs/Img: 21.38  IOU: 75.41%     Recall:95.16%
      287   708   744       RPs/Img: 21.34  IOU: 75.41%     Recall:95.16%
      288   708   744       RPs/Img: 21.33  IOU: 75.41%     Recall:95.16%
      289   710   746       RPs/Img: 21.33  IOU: 75.44%     Recall:95.17%
      290   711   748       RPs/Img: 21.34  IOU: 75.38%     Recall:95.05%
      291   713   750       RPs/Img: 21.32  IOU: 75.41%     Recall:95.07%
      292   715   752       RPs/Img: 21.37  IOU: 75.37%     Recall:95.08%
      293   717   754       RPs/Img: 21.33  IOU: 75.40%     Recall:95.09%
      294   719   756       RPs/Img: 21.32  IOU: 75.42%     Recall:95.11%
      295   721   758       RPs/Img: 21.32  IOU: 75.41%     Recall:95.12%
      296   722   759       RPs/Img: 21.28  IOU: 75.42%     Recall:95.13%
      297   722   759       RPs/Img: 21.36  IOU: 75.42%     Recall:95.13%
      298   722   759       RPs/Img: 21.42  IOU: 75.42%     Recall:95.13%
      299   724   761       RPs/Img: 21.41  IOU: 75.44%     Recall:95.14%
      300   725   762       RPs/Img: 21.43  IOU: 75.44%     Recall:95.14%
      301   727   764       RPs/Img: 21.42  IOU: 75.48%     Recall:95.16%
      302   728   765       RPs/Img: 21.43  IOU: 75.46%     Recall:95.16%
      303   728   765       RPs/Img: 21.40  IOU: 75.46%     Recall:95.16%
      304   730   767       RPs/Img: 21.40  IOU: 75.48%     Recall:95.18%
      305   734   771       RPs/Img: 21.42  IOU: 75.50%     Recall:95.20%
      306   746   783       RPs/Img: 21.45  IOU: 75.59%     Recall:95.27%
      307   748   785       RPs/Img: 21.43  IOU: 75.62%     Recall:95.29%
      308   750   787       RPs/Img: 21.42  IOU: 75.59%     Recall:95.30%
      309   752   789       RPs/Img: 21.43  IOU: 75.62%     Recall:95.31%
      310   754   791       RPs/Img: 21.44  IOU: 75.63%     Recall:95.32%
    

    1.第一次修改

    • 网络结构如下
    [net]
    #test
    batch=1
    subdivisions=1
    #train
    
    #batch=64
    #subdivisions=4
    
    
    width=416
    height=416
    channels=3
    momentum=0.9
    decay=0.0005
    angle=0
    saturation = 1.5
    exposure = 1.5
    hue=.1
    
    learning_rate=0.001
    max_batches = 40200
    policy=steps
    steps=-1,100,20000,30000
    scales=.1,10,.1,.1
    
    [convolutional]
    batch_normalize=1
    filters=16
    size=3
    stride=1
    pad=1
    activation=leaky
    
    [maxpool]
    size=2
    stride=2
    
    [convolutional]
    batch_normalize=1
    filters=32
    size=3
    stride=1
    pad=1
    activation=leaky
    
    [maxpool]
    size=2
    stride=2
    
    [convolutional]
    batch_normalize=1
    filters=64
    size=3
    stride=1
    pad=1
    activation=leaky
    
    [maxpool]
    size=2
    stride=2
    
    [convolutional]
    batch_normalize=1
    filters=128
    size=3
    stride=1
    pad=1
    activation=leaky
    
    [maxpool]
    size=2
    stride=2
    
    [convolutional]
    batch_normalize=1
    filters=256
    size=3
    stride=1
    pad=1
    activation=leaky
    
    [maxpool]
    size=2
    stride=2
    
    [convolutional]
    batch_normalize=1
    filters=512
    size=3
    stride=1
    pad=1
    activation=leaky
    
    [maxpool]
    size=2
    stride=1
    
    [convolutional]
    batch_normalize=1
    filters=512
    size=3
    stride=1
    pad=1
    activation=leaky
    
    ###########
    
    [convolutional]
    batch_normalize=1
    size=3
    stride=1
    pad=1
    filters=512
    activation=leaky
    
    [convolutional]
    size=1
    stride=1
    pad=1
    filters=30
    activation=linear
    
    [region]
    anchors = 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52
    bias_match=1
    classes=1
    coords=4
    num=5
    softmax=1
    jitter=.2
    rescore=1
    
    object_scale=5
    noobject_scale=1
    class_scale=1
    coord_scale=1
    
    absolute=1
    thresh = .6
    random=1
    
    • Loss-iter Curve如下
    image.png
    • Evaluate Recall
      252   604   690       RPs/Img: 92.45  IOU: 66.21%     Recall:87.54%
      253   605   692       RPs/Img: 92.43  IOU: 66.18%     Recall:87.43%
      254   607   694       RPs/Img: 92.44  IOU: 66.17%     Recall:87.46%
      255   610   697       RPs/Img: 92.37  IOU: 66.22%     Recall:87.52%
      256   610   697       RPs/Img: 92.28  IOU: 66.22%     Recall:87.52%
      257   610   697       RPs/Img: 92.21  IOU: 66.22%     Recall:87.52%
      258   611   699       RPs/Img: 92.13  IOU: 66.21%     Recall:87.41%
      259   612   701       RPs/Img: 92.07  IOU: 66.16%     Recall:87.30%
      260   614   703       RPs/Img: 91.99  IOU: 66.22%     Recall:87.34%
      261   616   705       RPs/Img: 92.05  IOU: 66.23%     Recall:87.38%
      262   618   707       RPs/Img: 92.05  IOU: 66.24%     Recall:87.41%
      263   618   707       RPs/Img: 92.20  IOU: 66.24%     Recall:87.41%
      264   618   707       RPs/Img: 92.20  IOU: 66.24%     Recall:87.41%
      265   620   709       RPs/Img: 92.12  IOU: 66.23%     Recall:87.45%
      266   621   710       RPs/Img: 92.27  IOU: 66.22%     Recall:87.46%
      267   623   712       RPs/Img: 92.22  IOU: 66.27%     Recall:87.50%
      268   624   716       RPs/Img: 92.25  IOU: 66.21%     Recall:87.15%
      269   625   717       RPs/Img: 92.29  IOU: 66.22%     Recall:87.17%
      270   627   719       RPs/Img: 92.26  IOU: 66.24%     Recall:87.20%
      271   629   721       RPs/Img: 92.26  IOU: 66.25%     Recall:87.24%
      272   631   723       RPs/Img: 92.18  IOU: 66.27%     Recall:87.28%
      273   631   723       RPs/Img: 92.32  IOU: 66.27%     Recall:87.28%
      274   633   725       RPs/Img: 92.29  IOU: 66.26%     Recall:87.31%
      275   633   725       RPs/Img: 92.35  IOU: 66.26%     Recall:87.31%
      276   633   725       RPs/Img: 92.28  IOU: 66.26%     Recall:87.31%
      277   634   726       RPs/Img: 92.26  IOU: 66.26%     Recall:87.33%
      278   636   728       RPs/Img: 92.18  IOU: 66.29%     Recall:87.36%
      279   637   730       RPs/Img: 92.23  IOU: 66.25%     Recall:87.26%
      280   640   734       RPs/Img: 92.23  IOU: 66.22%     Recall:87.19%
      281   642   738       RPs/Img: 92.19  IOU: 66.16%     Recall:86.99%
      282   644   740       RPs/Img: 92.32  IOU: 66.20%     Recall:87.03%
      283   646   742       RPs/Img: 92.23  IOU: 66.23%     Recall:87.06%
      284   646   742       RPs/Img: 92.24  IOU: 66.23%     Recall:87.06%
      285   648   744       RPs/Img: 92.09  IOU: 66.24%     Recall:87.10%
      286   648   744       RPs/Img: 92.00  IOU: 66.24%     Recall:87.10%
      287   648   744       RPs/Img: 92.06  IOU: 66.24%     Recall:87.10%
      288   648   744       RPs/Img: 92.02  IOU: 66.24%     Recall:87.10%
      289   650   746       RPs/Img: 92.13  IOU: 66.23%     Recall:87.13%
      290   650   748       RPs/Img: 92.23  IOU: 66.17%     Recall:86.90%
      291   652   750       RPs/Img: 92.15  IOU: 66.22%     Recall:86.93%
      292   652   752       RPs/Img: 92.14  IOU: 66.17%     Recall:86.70%
      293   654   754       RPs/Img: 92.12  IOU: 66.22%     Recall:86.74%
      294   656   756       RPs/Img: 92.14  IOU: 66.23%     Recall:86.77%
      295   657   758       RPs/Img: 92.16  IOU: 66.21%     Recall:86.68%
      296   658   759       RPs/Img: 92.16  IOU: 66.20%     Recall:86.69%
      297   658   759       RPs/Img: 92.36  IOU: 66.20%     Recall:86.69%
      298   658   759       RPs/Img: 92.43  IOU: 66.20%     Recall:86.69%
      299   660   761       RPs/Img: 92.35  IOU: 66.24%     Recall:86.73%
      300   660   762       RPs/Img: 92.35  IOU: 66.21%     Recall:86.61%
      301   662   764       RPs/Img: 92.34  IOU: 66.24%     Recall:86.65%
      302   663   765       RPs/Img: 92.36  IOU: 66.24%     Recall:86.67%
      303   663   765       RPs/Img: 92.20  IOU: 66.24%     Recall:86.67%
      304   665   767       RPs/Img: 92.06  IOU: 66.29%     Recall:86.70%
      305   669   771       RPs/Img: 92.07  IOU: 66.34%     Recall:86.77%
      306   681   783       RPs/Img: 92.02  IOU: 66.32%     Recall:86.97%
      307   683   785       RPs/Img: 91.98  IOU: 66.32%     Recall:87.01%
      308   685   787       RPs/Img: 92.00  IOU: 66.33%     Recall:87.04%
      309   687   789       RPs/Img: 92.01  IOU: 66.35%     Recall:87.07%
      310   689   791       RPs/Img: 91.99  IOU: 66.38%     Recall:87.10%
    

    2.第二次修改

    • 网络结构如下
    [net]
    #test
    #batch=1
    #subdivisions=1
    #train
    batch=64
    subdivisions=4
    width=416
    height=416
    channels=3
    momentum=0.9
    decay=0.0005
    angle=0
    saturation = 1.5
    exposure = 1.5
    hue=.1
    
    learning_rate=0.001
    max_batches = 40200
    policy=steps
    steps=-1,100,20000,30000
    scales=.1,10,.1,.1
    
    [convolutional]
    batch_normalize=1
    filters=16
    size=3
    stride=1
    pad=1
    activation=leaky
    
    [maxpool]
    size=2
    stride=2
    
    [convolutional]
    batch_normalize=1
    filters=32
    size=3
    stride=1
    pad=1
    activation=leaky
    
    [maxpool]
    size=2
    stride=2
    
    [convolutional]
    batch_normalize=1
    filters=64
    size=3
    stride=1
    pad=1
    activation=leaky
    
    [maxpool]
    size=2
    stride=2
    
    [convolutional]
    batch_normalize=1
    filters=128
    size=3
    stride=1
    pad=1
    activation=leaky
    
    [maxpool]
    size=2
    stride=2
    
    [convolutional]
    batch_normalize=1
    filters=256
    size=3
    stride=1
    pad=1
    activation=leaky
    
    [maxpool]
    size=2
    stride=2
    
    [convolutional]
    batch_normalize=1
    filters=512
    size=3
    stride=1
    pad=1
    activation=leaky
    
    [maxpool]
    size=2
    stride=1
    
    [convolutional]
    batch_normalize=1
    filters=512
    size=3
    stride=1
    pad=1
    activation=leaky
    
    ###########
    
    [convolutional]
    batch_normalize=1
    size=3
    stride=1
    pad=1
    filters=512
    activation=leaky
    ###New layer add ###
    [convolutional]
    batch_normalize=1
    size=3
    stride=1
    pad=1
    filters=512
    activation=leaky
    
    [convolutional]
    size=1
    stride=1
    pad=1
    filters=30
    activation=linear
    
    [region]
    anchors = 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52
    bias_match=1
    classes=1
    coords=4
    num=5
    softmax=1
    jitter=.2
    rescore=1
    
    object_scale=5
    noobject_scale=1
    class_scale=1
    coord_scale=1
    
    absolute=1
    thresh = .6
    random=1
    
    • Evaluate Recall
      252   639   690       RPs/Img: 33.14  IOU: 73.85%     Recall:92.61%
      253   640   692       RPs/Img: 33.11  IOU: 73.83%     Recall:92.49%
      254   642   694       RPs/Img: 33.09  IOU: 73.86%     Recall:92.51%
      255   645   697       RPs/Img: 33.05  IOU: 73.93%     Recall:92.54%
      256   645   697       RPs/Img: 33.03  IOU: 73.93%     Recall:92.54%
      257   645   697       RPs/Img: 33.02  IOU: 73.93%     Recall:92.54%
      258   647   699       RPs/Img: 32.93  IOU: 73.96%     Recall:92.56%
      259   648   701       RPs/Img: 32.95  IOU: 73.93%     Recall:92.44%
      260   650   703       RPs/Img: 32.91  IOU: 73.95%     Recall:92.46%
      261   652   705       RPs/Img: 32.92  IOU: 73.97%     Recall:92.48%
      262   654   707       RPs/Img: 32.92  IOU: 73.98%     Recall:92.50%
      263   654   707       RPs/Img: 32.91  IOU: 73.98%     Recall:92.50%
      264   654   707       RPs/Img: 32.91  IOU: 73.98%     Recall:92.50%
      265   656   709       RPs/Img: 32.90  IOU: 73.98%     Recall:92.52%
      266   656   710       RPs/Img: 32.82  IOU: 73.94%     Recall:92.39%
      267   658   712       RPs/Img: 32.80  IOU: 73.94%     Recall:92.42%
      268   662   716       RPs/Img: 32.84  IOU: 73.98%     Recall:92.46%
      269   663   717       RPs/Img: 32.80  IOU: 73.99%     Recall:92.47%
      270   664   719       RPs/Img: 32.83  IOU: 73.95%     Recall:92.35%
      271   666   721       RPs/Img: 32.80  IOU: 73.97%     Recall:92.37%
      272   668   723       RPs/Img: 32.79  IOU: 73.97%     Recall:92.39%
      273   668   723       RPs/Img: 32.89  IOU: 73.97%     Recall:92.39%
      274   670   725       RPs/Img: 32.83  IOU: 74.00%     Recall:92.41%
      275   670   725       RPs/Img: 32.88  IOU: 74.00%     Recall:92.41%
      276   670   725       RPs/Img: 32.87  IOU: 74.00%     Recall:92.41%
      277   671   726       RPs/Img: 32.81  IOU: 74.00%     Recall:92.42%
      278   673   728       RPs/Img: 32.80  IOU: 74.03%     Recall:92.45%
      279   674   730       RPs/Img: 32.85  IOU: 74.00%     Recall:92.33%
      280   677   734       RPs/Img: 32.89  IOU: 73.93%     Recall:92.23%
      281   679   738       RPs/Img: 32.90  IOU: 73.87%     Recall:92.01%
      282   681   740       RPs/Img: 32.92  IOU: 73.90%     Recall:92.03%
      283   683   742       RPs/Img: 32.90  IOU: 73.92%     Recall:92.05%
      284   683   742       RPs/Img: 32.90  IOU: 73.92%     Recall:92.05%
      285   685   744       RPs/Img: 32.87  IOU: 73.94%     Recall:92.07%
      286   685   744       RPs/Img: 32.82  IOU: 73.94%     Recall:92.07%
      287   685   744       RPs/Img: 32.77  IOU: 73.94%     Recall:92.07%
      288   685   744       RPs/Img: 32.74  IOU: 73.94%     Recall:92.07%
      289   687   746       RPs/Img: 32.81  IOU: 73.91%     Recall:92.09%
      290   689   748       RPs/Img: 32.84  IOU: 73.89%     Recall:92.11%
      291   691   750       RPs/Img: 32.82  IOU: 73.91%     Recall:92.13%
      292   693   752       RPs/Img: 32.86  IOU: 73.86%     Recall:92.15%
      293   695   754       RPs/Img: 32.84  IOU: 73.87%     Recall:92.18%
      294   697   756       RPs/Img: 32.89  IOU: 73.87%     Recall:92.20%
      295   699   758       RPs/Img: 32.91  IOU: 73.86%     Recall:92.22%
      296   700   759       RPs/Img: 32.83  IOU: 73.86%     Recall:92.23%
      297   700   759       RPs/Img: 32.84  IOU: 73.86%     Recall:92.23%
      298   700   759       RPs/Img: 32.89  IOU: 73.86%     Recall:92.23%
      299   702   761       RPs/Img: 32.86  IOU: 73.90%     Recall:92.25%
      300   703   762       RPs/Img: 32.83  IOU: 73.90%     Recall:92.26%
      301   705   764       RPs/Img: 32.84  IOU: 73.93%     Recall:92.28%
      302   706   765       RPs/Img: 32.82  IOU: 73.92%     Recall:92.29%
      303   706   765       RPs/Img: 32.81  IOU: 73.92%     Recall:92.29%
      304   708   767       RPs/Img: 32.76  IOU: 73.94%     Recall:92.31%
      305   712   771       RPs/Img: 32.78  IOU: 73.98%     Recall:92.35%
      306   724   783       RPs/Img: 32.81  IOU: 74.08%     Recall:92.46%
      307   726   785       RPs/Img: 32.81  IOU: 74.11%     Recall:92.48%
      308   728   787       RPs/Img: 32.79  IOU: 74.11%     Recall:92.50%
      309   730   789       RPs/Img: 32.81  IOU: 74.13%     Recall:92.52%
      310   732   791       RPs/Img: 32.84  IOU: 74.17%     Recall:92.54%
    

    相关文章

      网友评论

          本文标题:Tiny-yolo网络修改记录

          本文链接:https://www.haomeiwen.com/subject/kwvwsxtx.html