目录
- 相关概念介绍
- 实现原理介绍
- 源码分析
- 总结
- 参考地址
相关概念介绍
- 数组
采用一段连续的存储单元来存储数据。 - 线性链表
具有链接存储结构的线性表,它用一组地址任意的存储单元存放线性表中的数据元素,逻辑上相邻的元素在物理上不要求也相邻,不能随机存取。一般用结点描述:结点(表示数据元素) =数据域(数据元素的映象) + 指针域(指示后继元素存储位置) - 红黑树
红黑树(Red Black Tree) 是一种自平衡二叉查找树,在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能。相关介绍参考红黑树原理和算法 - 哈希表
是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。
给定表M,存在函数f(key),对任意给定的关键字值key,代入函数后若能得到包含该关键字的记录在表中的地址,则称表M为哈希(Hash)表,函数f(key)为哈希(Hash) 函数。 - 哈希冲突
如果两个不同的元素,通过哈希函数得出的实际存储地址,然后要进行插入的时候,发现已经被其他元素占用了,这就是所谓的哈希冲突,也叫哈希碰撞。
实现原理介绍
HashMap原理图简单来说,HashMap由数组+链表组成的,数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的,如果定位到的数组位置不含链表(当前node的next指向null),那么对于查找,添加等操作很快,仅需一次寻址即可;如果定位到的数组包含链表,对于添加操作,其时间复杂度为O(n),首先遍历链表,存在即覆盖,否则新增;对于查找操作来讲,仍需遍历链表,然后通过key对象的equals方法逐一比对查找。所以,性能考虑,HashMap中的链表出现越少,性能才会越好。
源码分析
以下所有代码基于jdk1.8
- 成员变量
//默认初始化容器大小 16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
//默认容器最大值 2^30
static final int MAXIMUM_CAPACITY = 1 << 30;
//默认的负载因子,当容器元素数量达到总容量*DEFAULT_LOAD_FACTOR时会进行扩容操作
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//默认树形阈值
static final int TREEIFY_THRESHOLD = 8;
//默认非树形阈值
static final int UNTREEIFY_THRESHOLD = 6;
//默认红黑树最小容量
static final int MIN_TREEIFY_CAPACITY = 64;
//数组
transient Node<K,V>[] table;
//使用Set存储所有的节点
transient Set<Map.Entry<K,V>> entrySet;
//map的大小
transient int size;
//hashMap修改的次数
transient int modCount;
//下一次扩容的阈值
int threshold;
//hash表的负载因子
final float loadFactor;
- 节点
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
- #put()操作
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
static final int hash(Object key) {
int h;
//h>>>16 无符号右移16位,hash的效果等于将key的hashCode的高16位^低16位运算
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//1.如果容器还未初始化,进行resize操作
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//2.n是2的倍数所以(以n=16为例)n-1为1111,(n-1)&hash就是取hash的低四位,即保证坐标值一定是在数组范围之类
//计算出该元素应该放入数组的下标,这里表示当该位置为null时,新增一个节点并放入
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
//3.当不为空时,默认采用开放寻址法寻找到key相同(或者新增)的节点
Node<K,V> e; K k;
//3.1 如果新增的key-value已经有对应的值了,不做操作,直接返回原值
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//3.2 如果数组中的节点是树形节点,进行红黑树的插入操作
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//3.2 如果数组中的节点是线性链表,遍历节点,如果有相同的就break,否则将节点加入到末尾。
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//如果链表长度超过了树形阈值,则将链表转换成红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//4. 如果e不为空,说明找到相同key,替换新的value并返回旧的value
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
//自定义扩展方法,LinkedHashMap中有实现
afterNodeAccess(e);
return oldValue;
}
}
//5. 修改次数自增,容器大小自增,并且如果超过了阈值,进行resize操作
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
主要流程如下:
- 判断HashMap是否初始化,如果还没有初始化,先初始化;
- 通过hash&(n-1)算出在桶上的位置,如果对应位置为空,直接放入该位置中;
- 如果桶上的对应的位置不为空,则进入对应的链表进行下一步判断:
- 根据hash或者key来判断是否相同,相同时e=p;
- 如果p是红黑树,则进入红黑树的插入逻辑,并返回e;
- 遍历p链表,根据hash或者key来判断是否存在相同,如果存在直接返回e,否则创建新的节点;
- 根据上面返回的e节点来判断,如果不为空,说明在HashMap中找到对应的节点,替换新的value值并返回旧值,结束put操作;
- 修改容器大小,并判断是否超过阈值,如果超过进行扩容操作。
- #resize()操作
final Node<K,V>[] resize() {
//1. 数据备份,数组,容量大小,扩容阈值
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
//2. 如果超过默认最大值,直接返回,否则变更大小(原大小*2)
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
//3. 如果原扩容阈值>0,新的容量=原扩容阈值,否则使用默认值
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//4. 根据负载因子计算新的扩容阈值
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
//5. 根据新的容量创建新的tab
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
//6. 进行扩容操作
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
//5.1 对于单个节点,重新计算位置并放入
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
//5.2 树形节点单独处理
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//5.3 链表节点单独处理
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
//将链表的数据分成两波
//oldCap是旧桶的长度,是2的倍数,比如oldCap为16->10000
//e.hash&oldCap==0说明e.hash高位为0
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
//(e.hash & oldCap) == 0)的即hash值高位为0的还是原来的位置
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
//(e.hash & oldCap) != 0)的即hash值高位不为0的放入oldCap+j的位置
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
主要流程如下:
-
先进行数组,容量大小,扩容阈值等的备份;
-
扩容时如果是单节点,重新计算桶的位置,新的桶位置根据hash值来,可能还在原来的位置,也可能翻倍增长,如下图中15->31;
-
如果是红黑树节点,单独处理;
-
如果是链表结构,将链表分为两部分,一部分hash高位为0还保持原来的位置,另一部分放到数组原来位置+oldCap的位置上。如图所示:
链表扩容示意图 -
与1.7版本的比较
1.7中没有红黑树,所以代码也比较简单一点
public V put(K key, V value) {
//如果数组为空,扩容
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
if (key == null)
return putForNullKey(value);
int hash = hash(key);
int i = indexFor(hash, table.length);
//根据找出的索引位置去判断该位置上链表有没有相同的entry
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
//增加entry
addEntry(hash, key, value, i);
return null;
}
void addEntry(int hash, K key, V value, int bucketIndex) {
//判断是否进行扩容操作
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}
//创建entry
createEntry(hash, key, value, bucketIndex);
}
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
Entry[] newTable = new Entry[newCapacity];
//重点在这
transfer(newTable, initHashSeedAsNeeded(newCapacity));
table = newTable;
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}
void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
for (Entry<K,V> e : table) {
while(null != e) {
Entry<K,V> next = e.next;
if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
int i = indexFor(e.hash, newCapacity);
//多线程下会形成闭环
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}
这里的扩容多线程情况下会出现闭环现象,下面通过几张图来解释闭环的形成:
我们假设 HashMap 从 2 resize到 4 :
初始图
假设我们有两个线程t1,t2,假设t1Entry<K,V> next = e.next;处挂起,t2完成了后面的操作,在按照上面的代码执行后:
t1停止调度
这个时候t1又恢复了调度,接着往下执行:
t1恢复调度
接着往下执行:
t1执行1
t1执行2
闭环形成:
闭环形成
- #get()操作
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//优先检查第一个节点
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
//如果是红黑树,进行红黑树操作
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
- #remove()操作
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
//找出需要remove的节点,跟get操作基本一致
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
//remove对应的节点
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
//红黑树对应操作
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
//链表的对应操作
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
- 红黑树的实现
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
//返回根节点
final TreeNode<K,V> root() {
for (TreeNode<K,V> r = this, p;;) {
if ((p = r.parent) == null)
return r;
r = p;
}
}
/**
* 由于TreeNode即是树结构也是双向链表.所以这里
* 保证树的根节点同时也是链表的首节点
*/
static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
int n;
if (root != null && tab != null && (n = tab.length) > 0) {
int index = (n - 1) & root.hash;
TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
if (root != first) {
Node<K,V> rn;
tab[index] = root;
TreeNode<K,V> rp = root.prev;
if ((rn = root.next) != null)
((TreeNode<K,V>)rn).prev = rp;
if (rp != null)
rp.next = rn;
if (first != null)
first.prev = root;
root.next = first;
root.prev = null;
}
assert checkInvariants(root);
}
}
//寻找节点
final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
TreeNode<K,V> p = this;
do {
int ph, dir; K pk;
TreeNode<K,V> pl = p.left, pr = p.right, q;
//如果当前节点的hash大于需要寻找节点的hash,则指向其左孩子,否则指向右孩子,如果当前节点就是要寻找的节点,直接返回
if ((ph = p.hash) > h)
p = pl;
else if (ph < h)
p = pr;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if (pl == null)
p = pr;
else if (pr == null)
p = pl;
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
p = (dir < 0) ? pl : pr;
else if ((q = pr.find(h, k, kc)) != null)
return q;
else
p = pl;
} while (p != null);
return null;
}
//获取相应的节点
final TreeNode<K,V> getTreeNode(int h, Object k) {
return ((parent != null) ? root() : this).find(h, k, null);
}
//插入操作
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
//获取父节点
TreeNode<K,V> root = (parent != null) ? root() : this;
for (TreeNode<K,V> p = root;;) {
int dir, ph; K pk;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
}
TreeNode<K,V> xp = p;
//根据hash判断,并且遍历插入到叶子节点,再进行平衡调整
if ((p = (dir <= 0) ? p.left : p.right) == null) {
Node<K,V> xpn = xp.next;
TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
if (dir <= 0)
xp.left = x;
else
xp.right = x;
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K,V>)xpn).prev = x;
moveRootToFront(tab, balanceInsertion(root, x));
return null;
}
}
}
//删除操作
final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
boolean movable) {
int n;
if (tab == null || (n = tab.length) == 0)
return;
int index = (n - 1) & hash;
TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
//1.先删除链表的关系
if (pred == null)
tab[index] = first = succ;
else
pred.next = succ;
if (succ != null)
succ.prev = pred;
if (first == null)
return;
//2.开始删除树形关系
if (root.parent != null)
root = root.root();
//如果链表太小,从红黑树转化成普通链表
if (root == null || root.right == null ||
(rl = root.left) == null || rl.left == null) {
tab[index] = first.untreeify(map); // too small
return;
}
//2.1 被删除节点左孩子与右孩子都不为空
TreeNode<K,V> p = this, pl = left, pr = right, replacement;
if (pl != null && pr != null) {
TreeNode<K,V> s = pr, sl;
//寻找删除节点的后继(中序遍历)由于第一步已经断开本删除节点与其后继的链接,所以这里使用中序遍历找出其后继
while ((sl = s.left) != null) // find successor
s = sl;
//交换后继与被删除节点的颜色
boolean c = s.red; s.red = p.red; p.red = c; // swap colors
TreeNode<K,V> sr = s.right;
TreeNode<K,V> pp = p.parent;
//如果pr就是其后继,直接交换位置
if (s == pr) { // p was s's direct parent
p.parent = s;
s.right = p;
}
else {
TreeNode<K,V> sp = s.parent;
if ((p.parent = sp) != null) {
if (s == sp.left)
sp.left = p;
else
sp.right = p;
}
if ((s.right = pr) != null)
pr.parent = s;
}
p.left = null;
if ((p.right = sr) != null)
sr.parent = p;
if ((s.left = pl) != null)
pl.parent = s;
if ((s.parent = pp) == null)
root = s;
else if (p == pp.left)
pp.left = s;
else
pp.right = s;
//此时,被删除的节点与其后继位置交换完成
if (sr != null)
replacement = sr;
else
replacement = p;
}
else if (pl != null)
//2.2 左子树不为空
replacement = pl;
else if (pr != null)
//2.3 右子树不为空
replacement = pr;
else
//2.4 左右子树都为空
replacement = p;
//3. 左右子树不为空进行,使用非空子树代替p
if (replacement != p) {
TreeNode<K,V> pp = replacement.parent = p.parent;
if (pp == null)
root = replacement;
else if (p == pp.left)
pp.left = replacement;
else
pp.right = replacement;
p.left = p.right = p.parent = null;
}
//4. 当删除节点是黑色的时候进行平衡转化
TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
//5. 点左右子树都为空,直接删除p节点
if (replacement == p) { // detach
TreeNode<K,V> pp = p.parent;
p.parent = null;
if (pp != null) {
if (p == pp.left)
pp.left = null;
else if (p == pp.right)
pp.right = null;
}
}
if (movable)
moveRootToFront(tab, r);
}
//左旋(动手画一下就懂了)
static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> r, pp, rl;
if (p != null && (r = p.right) != null) {
if ((rl = p.right = r.left) != null)
rl.parent = p;
if ((pp = r.parent = p.parent) == null)
(root = r).red = false;
else if (pp.left == p)
pp.left = r;
else
pp.right = r;
r.left = p;
p.parent = r;
}
return root;
}
//右旋(同理,动手画一下)
static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> l, pp, lr;
if (p != null && (l = p.left) != null) {
if ((lr = p.left = l.right) != null)
lr.parent = p;
if ((pp = l.parent = p.parent) == null)
(root = l).red = false;
else if (pp.right == p)
pp.right = l;
else
pp.left = l;
l.right = p;
p.parent = l;
}
return root;
}
//插入平衡转化
static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
TreeNode<K,V> x) {
//默认插入的节点为红色
x.red = true;
for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
//1.x为根节点,根节点默认为黑色,并直接返回
if ((xp = x.parent) == null) {
x.red = false;
return x;
}
else if (!xp.red || (xpp = xp.parent) == null)
//2.父节点为黑色,或者祖父节点为空,即父节点是根节点,此时不需要调整
return root;
//3.分类讨论,xp为左节点或者右节点
if (xp == (xppl = xpp.left)) {
//3.1. 再次分类,如果x的叔父节点:xppr,不为空且为红色节点,此时先进行部分颜色调整
if ((xppr = xpp.right) != null && xppr.red) {
//父节点,叔父节点变为黑色,祖父变为红色,x变成祖父节点
xppr.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
//3.1.1. 再次分类,如果x为xp的右孩子,则对xp进行左旋
if (x == xp.right) {
root = rotateLeft(root, x = xp);
//重新对xp,xpp定义
xpp = (xp = x.parent) == null ? null : xp.parent;
}
//这里xp为原来的x为红色,x也是红色,所以先进行颜色调整,然后进行右旋
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateRight(root, xpp);
}
}
}
}
else {
//镜像操作
if (xppl != null && xppl.red) {
xppl.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.left) {
root = rotateRight(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateLeft(root, xpp);
}
}
}
}
}
}
//删除平衡转化
static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
TreeNode<K,V> x) {
for (TreeNode<K,V> xp, xpl, xpr;;) {
if (x == null || x == root)
return root;
else if ((xp = x.parent) == null) {
x.red = false;
return x;
}
else if (x.red) {
//1.如果x的红色节点,修改为黑色,无需调整结构,直接返回
x.red = false;
return root;
}
else if ((xpl = xp.left) == x) {
//2.x为左节点
if ((xpr = xp.right) != null && xpr.red) {
//如果x的叔父节点为红色,此时左边比右边矮,需要左旋
xpr.red = false;
xp.red = true;
root = rotateLeft(root, xp);
xpr = (xp = x.parent) == null ? null : xp.right;
}
//如果xpr为空,x指向xp
if (xpr == null)
x = xp;
else {
//如果xpr不为空,则分别对xpr的左右孩子进行分类
TreeNode<K,V> sl = xpr.left, sr = xpr.right;
if ((sr == null || !sr.red) &&
(sl == null || !sl.red)) {
//如果左孩子,右孩子满足为空或者为黑色节点,xpr转为红色,x指向xp,进入下一次循环,xp会被转成黑色,满足红黑树条件
xpr.red = true;
x = xp;
}
else {
if (sr == null || !sr.red) {
//xpr左子树不为空且为红色
if (sl != null)
//xpr左子树不为空,将其变成黑色
sl.red = false; //xpr变成红色,不满足红黑树3,4,需要进行右旋
xpr.red = true;
root = rotateRight(root, xpr);
xpr = (xp = x.parent) == null ?
null : xp.right;
}
if (xpr != null) {
xpr.red = (xp == null) ? false : xp.red;
if ((sr = xpr.right) != null)
sr.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateLeft(root, xp);
}
x = root;
}
}
}
else { // symmetric
if (xpl != null && xpl.red) {
xpl.red = false;
xp.red = true;
root = rotateRight(root, xp);
xpl = (xp = x.parent) == null ? null : xp.left;
}
if (xpl == null)
x = xp;
else {
TreeNode<K,V> sl = xpl.left, sr = xpl.right;
if ((sl == null || !sl.red) &&
(sr == null || !sr.red)) {
xpl.red = true;
x = xp;
}
else {
if (sl == null || !sl.red) {
if (sr != null)
sr.red = false;
xpl.red = true;
root = rotateLeft(root, xpl);
xpl = (xp = x.parent) == null ?
null : xp.left;
}
if (xpl != null) {
xpl.red = (xp == null) ? false : xp.red;
if ((sl = xpl.left) != null)
sl.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateRight(root, xp);
}
x = root;
}
}
}
}
}
}
总结
参考地址
红黑树原理和算法
红黑树插入图解
二叉树的遍历规则
红黑树化过程
推荐:并发情况下:Java HashMap 形成死循环的原因
网友评论