美文网首页python入门基础学习
一篇文章让你吃透Python迭代对象、迭代器、生成器

一篇文章让你吃透Python迭代对象、迭代器、生成器

作者: 编程新视野 | 来源:发表于2018-11-11 15:25 被阅读6次

在了解Python的数据结构时,容器(container)、可迭代对象(iterable)、迭代器(iterator)、生成器(generator)、列表/集合/字典推导式(list,set,dict comprehension)众多概念参杂在一起,难免让初学者一头雾水,我将用一篇文章试图将这些概念以及它们之间的关系捋清楚。

image

容器(container)

添加小编学习群813542856即可获得10套PDF以及大量学习资料

image

容器是一种把多个元素组织在一起的数据结构,容器中的元素可以逐个地迭代获取,可以用 in , not in 关键字判断元素是否包含在容器中。通常这类数据结构把所有的元素存储在内存中(也有一些特列并不是所有的元素都放在内存)在Python中,常见的容器对象有:

  • list, deque, ....
  • set, frozensets, ....
  • dict, defaultdict, OrderedDict, Counter, ....
  • tuple, namedtuple, …
  • str

容器比较容易理解,因为你就可以把它看作是一个盒子、一栋房子、一个柜子,里面可以塞任何东西。从技术角度来说,当它可以用来询问某个元素是否包含在其中时,那么这个对象就可以认为是一个容器,比如 list,set,tuples都是容器对象:

image

询问某元素是否在dict中用dict的中key:

image

询问某substring是否在string中:

image

尽管绝大多数容器都提供了某种方式来获取其中的每一个元素,但这并不是容器本身提供的能力,而是 可迭代对象 赋予了容器这种能力,当然并不是所有的容器都是可迭代的,比如: Bloom filter ,虽然Bloom filter可以用来检测某个元素是否包含在容器中,但是并不能从容器中获取其中的每一个值,因为Bloom filter压根就没把元素存储在容器中,而是通过一个散列函数映射成一个值保存在数组中。

可迭代对象(iterable)

刚才说过,很多容器都是可迭代对象,此外还有更多的对象同样也是可迭代对象,比如处于打开状态的files,sockets等等。但凡是可以返回一个 迭代器 的对象都可称之为可迭代对象,听起来可能有点困惑,没关系,可迭代对象与迭代器有一个非常重要的区别。先看一个例子:

image

这里 x 是一个可迭代对象,可迭代对象和容器一样是一种通俗的叫法,并不是指某种具体的数据类型,list是可迭代对象,dict是可迭代对象,set也是可迭代对象。 y 和 z 是两个独立的迭代器,迭代器内部持有一个状态,该状态用于记录当前迭代所在的位置,以方便下次迭代的时候获取正确的元素。迭代器有一种具体的迭代器类型,比如 list_iterator , set_iterator 。可迭代对象实现了 iternext 方法(python2中是 next 方法,python3是 next 方法),这两个方法对应内置函数 iter() 和 next() 。 iter 方法返回可迭代对象本身,这使得他既是一个可迭代对象同时也是一个迭代器。

当运行代码:

x = [1, 2, 3]

for elem in x: ...

实际执行情况是:

image

反编译该段代码,你可以看到解释器显示地调用 GET_ITER 指令,相当于调用 iter(x) , FOR_ITER 指令就是调用 next() 方法,不断地获取迭代器中的下一个元素,但是你没法直接从指令中看出来,因为他被解释器优化过了。

image

迭代器(iterator)

那么什么迭代器呢?它是一个带状态的对象,他能在你调用 next() 方法的时候返回容器中的下一个值,任何实现了 next() (python2中实现 next() )方法的对象都是迭代器,至于它是如何实现的这并不重要。

所以,迭代器就是实现了工厂模式的对象,它在你每次你询问要下一个值的时候给你返回。有很多关于迭代器的例子,比如 itertools 函数返回的都是迭代器对象。

生成无限序列:

image

从一个有限序列中生成无限序列:

image

从无限的序列中生成有限序列:

image

为了更直观地感受迭代器内部的执行过程,我们自定义一个迭代器,以斐波那契数列为例:

image

Fib既是一个可迭代对象(因为它实现了 iter 方法),又是一个迭代器(因为实现了 next 方法)。实例变量 prev 和 curr 用户维护迭代器内部的状态。每次调用 next() 方法的时候做两件事:

  1. 为下一次调用 next() 方法修改状态
  2. 为当前这次调用生成返回结果

迭代器就像一个懒加载的工厂,等到有人需要的时候才给它生成值返回,没调用的时候就处于休眠状态等待下一次调用。

生成器(generator)

生成器算得上是Python语言中最吸引人的特性之一,生成器其实是一种特殊的迭代器,不过这种迭代器更加优雅。它不需要再像上面的类一样写 iter() 和 next() 方法了,只需要一个 yiled 关键字。 生成器有如下特征是它一定也是迭代器(反之不成立),因此任何生成器也是以一种懒加载的模式生成值。用生成器来实现斐波那契数列的例子是:

image

fib 就是一个普通的python函数,它特需的地方在于函数体中没有 return 关键字,函数的返回值是一个生成器对象。当执行 f=fib() 返回的是一个生成器对象,此时函数体中的代码并不会执行,只有显示或隐示地调用next的时候才会真正执行里面的代码。

生成器在Python中是一个非常强大的编程结构,可以用更少地中间变量些流式代码,此外,相比其它容器对象它更能节省内存和CPU,当然它可以用更少的代码来实现相似的功能。现在就可以动手重构你的代码了,但凡看到类似:

image

都可以用生成器函数来替换:

<pre class="ql-align-justify" style="margin: 0px; padding: 0px; border: 0px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-weight: 400; font-stretch: inherit; font-size: 18px; line-height: inherit; font-family: inherit; vertical-align: baseline; word-break: break-word; color: rgb(93, 93, 93); letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-style: initial; text-decoration-color: initial;">

def iter_something(): for ... in ...: 
 yield x

</pre>

相关文章

网友评论

    本文标题:一篇文章让你吃透Python迭代对象、迭代器、生成器

    本文链接:https://www.haomeiwen.com/subject/lawxfqtx.html