ggpubr包系列学习教程(十)

作者: Davey1220 | 来源:发表于2018-09-09 19:13 被阅读2次

    使用ggbarplot函数绘制条形图

    加载所需R包

    library(ggpubr)
    

    基本用法:

    Usage

    ggbarplot(data, x, y, combine = FALSE, merge = FALSE, color = "black",
              fill = "white", palette = NULL, size = NULL, width = NULL,
              title = NULL, xlab = NULL, ylab = NULL, facet.by = NULL,
              panel.labs = NULL, short.panel.labs = TRUE, select = NULL,
              remove = NULL, order = NULL, add = "none", add.params = list(),
              error.plot = "errorbar", label = FALSE, lab.col = "black",
              lab.size = 4, lab.pos = c("out", "in"), lab.vjust = NULL,
              lab.hjust = NULL, sort.val = c("none", "desc", "asc"),
              sort.by.groups = TRUE, top = Inf, position = position_stack(),
              ggtheme = theme_pubr(), ...)
    

    常用参数:

    Arguments

    data    #a data frame
    x, y    #x and y variables for drawing.
    combine    #logical value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, create a multi-panel plot by combining the plot of y variables.
    merge    #logical or character value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, merge multiple y variables in the same plotting area. Allowed values include also "asis" (TRUE) and "flip". If merge = "flip", then y variables are used as x tick labels and the x variable is used as grouping variable.
    color, fill    #outline and fill colors.
    palette    #the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty".
    size    #Numeric value (e.g.: size = 1). change the size of points and outlines.
    width    #numeric value between 0 and 1 specifying box width.
    title    #plot main title.
    xlab    #character vector specifying x axis labels. Use xlab = FALSE to hide xlab.
    ylab    #character vector specifying y axis labels. Use ylab = FALSE to hide ylab.
    facet.by    #character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data.
    panel.labs    #a list of one or two character vectors to modify facet panel labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies the labels for the "sex" variable. For two grouping variables, you can use for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs", "Lev", "Lev2") ).
    short.panel.labs    #logical value. Default is TRUE. If TRUE, create short labels for panels by omitting variable names; in other words panels will be labelled only by variable grouping levels.
    select    #character vector specifying which items to display.
    remove    #character vector specifying which items to remove from the plot.
    order    #character vector specifying the order of items.
    add    #character vector for adding another plot element (e.g.: dot plot or error bars). Allowed values are one or the combination of: "none", "dotplot", "jitter", "boxplot", "point", "mean", "mean_se", "mean_sd", "mean_ci", "mean_range", "median", "median_iqr", "median_mad", "median_range"; see ?desc_statby for more details.
    add.params    #parameters (color, shape, size, fill, linetype) for the argument 'add'; e.g.: add.params = list(color = "red").
    error.plot    #plot type used to visualize error. Allowed values are one of c("pointrange", "linerange", "crossbar", "errorbar", "upper_errorbar", "lower_errorbar", "upper_pointrange", "lower_pointrange", "upper_linerange", "lower_linerange"). Default value is "pointrange" or "errorbar". Used only when add != "none" and add contains one "mean_*" or "med_*" where "*" = sd, se, ....
    label    #specify whether to add labels on the bar plot. Allowed values are: logical value: If TRUE, y values is added as labels on the bar plot; character vector: Used as text labels; must be the same length as y.
    lab.col, lab.size    #text color and size for labels.
    lab.pos    #character specifying the position for labels. Allowed values are "out" (for outside) or "in" (for inside). Ignored when lab.vjust != NULL.
    lab.vjust    #numeric, vertical justification of labels. Provide negative value (e.g.: -0.4) to put labels outside the bars or positive value to put labels inside (e.g.: 2).
    lab.hjust    #numeric, horizontal justification of labels.
    sort.val    #a string specifying whether the value should be sorted. Allowed values are "none" (no sorting), "asc" (for ascending) or "desc" (for descending).
    sort.by.groups     #logical value. If TRUE the data are sorted by groups. Used only when sort.val != "none".
    top    #a numeric value specifying the number of top elements to be shown.
    position    #设置排列方式 Position adjustment, either as a string, or the result of a call to a position adjustment function.
    ggtheme    #function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(),
    ...    #other arguments to be passed to be passed to ggpar().
    

    使用示例:

    Examples

    # Data
    df <- data.frame(dose=c("D0.5", "D1", "D2"),
                     len=c(4.2, 10, 29.5))
    print(df)
    
    ##   dose  len
    ## 1 D0.5  4.2
    ## 2   D1 10.0
    ## 3   D2 29.5
    
    # Basic plot with label outsite 添加标量y的值作为标签
    p1 <- ggbarplot(df, x = "dose", y = "len",
              label = TRUE, label.pos = "out")
    p1
    
    p1
    # Change width 更改柱子的宽度
    p2 <- ggbarplot(df, x = "dose", y = "len", width = 0.5)
    p2
    
    p2
    # Change the plot orientation: horizontal 变换坐标轴的方向
    p3 <- ggbarplot(df, "dose", "len", orientation = "horiz")
    p3 
    
    p3
    # Change the default order of items 设定指定的排列顺序
    p4 <- ggbarplot(df, "dose", "len",
              order = c("D2", "D1", "D0.5"))
    p4
    
    p4
    # Change colors 更改填充色和边框色
    # Change fill and outline color
    # add labels inside bars
    p5 <- ggbarplot(df, "dose", "len",
              fill = "steelblue", color = "black",
              label = TRUE, lab.pos = "in", lab.col = "white")
    p5
    
    p5
    # Change colors by groups: dose
    # Use custom color palette
    p6 <- ggbarplot(df, "dose", "len", color = "dose",
              palette = c("#00AFBB", "#E7B800", "#FC4E07"))
    p6
    
    p6
    # Change fill and outline colors by groups
    p7 <- ggbarplot(df, "dose", "len",
              fill = "dose", color = "dose",
              palette = c("#00AFBB", "#E7B800", "#FC4E07"))
    p7
    
    p7
    # Plot with multiple groups 分组绘图
    # Create some data
    df2 <- data.frame(supp=rep(c("VC", "OJ"), each=3),
                      dose=rep(c("D0.5", "D1", "D2"),2),
                      len=c(6.8, 15, 33, 4.2, 10, 29.5))
    print(df2)
    
    ##   supp dose  len
    ## 1   VC D0.5  6.8
    ## 2   VC   D1 15.0
    ## 3   VC   D2 33.0
    ## 4   OJ D0.5  4.2
    ## 5   OJ   D1 10.0
    ## 6   OJ   D2 29.5
    
    # Plot "len" by "dose" and change color by a second group: "supp"
    # Add labels inside bars
    p8 <- ggbarplot(df2, "dose", "len",
              fill = "supp", color = "supp",
              label = TRUE, lab.col = "white", lab.pos = "in")
    p8
    
    p8
    # Change position: Interleaved (dodged) bar plot 更改排列方式
    p9 <- ggbarplot(df2, "dose", "len",
              fill = "supp", color = "supp", palette = "Paired",
              label = TRUE,
              position = position_dodge())
    p9
    
    p9
    p10 <- ggbarplot(df2, "dose", "len",
                    fill = "supp", color = "supp", palette = "Paired",
                    label = TRUE,
                    position = position_fill())
    p10
    
    p10
    # Add points and errors
    # Data: ToothGrowth data set we'll be used.
    df3 <- ToothGrowth
    head(df3, 10)
    
    ##     len supp dose
    ## 1   4.2   VC  0.5
    ## 2  11.5   VC  0.5
    ## 3   7.3   VC  0.5
    ## 4   5.8   VC  0.5
    ## 5   6.4   VC  0.5
    ## 6  10.0   VC  0.5
    ## 7  11.2   VC  0.5
    ## 8  11.2   VC  0.5
    ## 9   5.2   VC  0.5
    ## 10  7.0   VC  0.5
    
    # It can be seen that for each group we have
    # different values
    p11 <- ggbarplot(df3, x = "dose", y = "len")
    p11
    
    p11
    # Visualize the mean of each group
    p12 <- ggbarplot(df3, x = "dose", y = "len",
              add = "mean")
    p12
    
    p12
    # Add error bars: mean_se 添加不同类型的误差棒
    # (other values include: mean_sd, mean_ci, median_iqr, ....)
    # Add labels
    p13 <- ggbarplot(df3, x = "dose", y = "len",
              add = "mean_se", label = TRUE, lab.vjust = -1.6)
    p13
    
    p13
    # Use only "upper_errorbar"
    p14 <- ggbarplot(df3, x = "dose", y = "len",
              add = "mean_se", error.plot = "upper_errorbar")
    p14
    
    p14
    # Change error.plot to "pointrange"
    p15 <- ggbarplot(df3, x = "dose", y = "len",
              add = "mean_se", error.plot = "pointrange")
    p15
    
    p15
    # Add jitter points and errors (mean_se)
    p16 <- ggbarplot(df3, x = "dose", y = "len",
              add = c("mean_se", "jitter"))
    p16
    
    p16
    # Add dot and errors (mean_se)
    p17 <- ggbarplot(df3, x = "dose", y = "len",
              add = c("mean_se", "dotplot"))
    p17
    
    p17
    # Multiple groups with error bars and jitter point
    p18 <- ggbarplot(df3, x = "dose", y = "len", color = "supp",
              add = "mean_se", palette = c("#00AFBB", "#E7B800"),
              position = position_dodge())
    p18
    
    p18

    参考来源:

    https://www.rdocumentation.org/packages/ggpubr/versions/0.1.4/topics/ggbarplot

    sessionInfo()
    
    ## R version 3.5.1 (2018-07-02)
    ## Platform: x86_64-apple-darwin15.6.0 (64-bit)
    ## Running under: OS X El Capitan 10.11.3
    ## 
    ## Matrix products: default
    ## BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
    ## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
    ## 
    ## locale:
    ## [1] zh_CN.UTF-8/zh_CN.UTF-8/zh_CN.UTF-8/C/zh_CN.UTF-8/zh_CN.UTF-8
    ## 
    ## attached base packages:
    ## [1] stats     graphics  grDevices utils     datasets  methods   base     
    ## 
    ## other attached packages:
    ## [1] bindrcpp_0.2.2   ggpubr_0.1.7.999 magrittr_1.5     ggplot2_3.0.0   
    ## 
    ## loaded via a namespace (and not attached):
    ##  [1] Rcpp_0.12.18       rstudioapi_0.7     bindr_0.1.1       
    ##  [4] knitr_1.20         tidyselect_0.2.4   munsell_0.5.0     
    ##  [7] colorspace_1.3-2   R6_2.2.2           rlang_0.2.2       
    ## [10] stringr_1.3.1      plyr_1.8.4         dplyr_0.7.6       
    ## [13] tools_3.5.1        grid_3.5.1         gtable_0.2.0      
    ## [16] withr_2.1.2        htmltools_0.3.6    assertthat_0.2.0  
    ## [19] yaml_2.2.0         lazyeval_0.2.1     rprojroot_1.3-2   
    ## [22] digest_0.6.16      tibble_1.4.2       crayon_1.3.4      
    ## [25] RColorBrewer_1.1-2 purrr_0.2.5        glue_1.3.0        
    ## [28] evaluate_0.11      rmarkdown_1.10     labeling_0.3      
    ## [31] stringi_1.2.4      compiler_3.5.1     pillar_1.3.0      
    ## [34] scales_1.0.0       backports_1.1.2    pkgconfig_2.0.2
    

    相关文章

      网友评论

        本文标题:ggpubr包系列学习教程(十)

        本文链接:https://www.haomeiwen.com/subject/lbjlgftx.html