数据导入和读取
tidyverse读取数据
原始数据
![](https://img.haomeiwen.com/i25205178/cc89d4f9546fb120.jpg)
test1 <- read_csv("diffmiRNA.txt") #会自动添加列名
![](https://img.haomeiwen.com/i25205178/ab9926939ce6cc0a.jpg)
![](https://img.haomeiwen.com/i25205178/bd66aa89ed7f483f.jpg)
test <- read_csv('diffmiRNA.txt',col_names = F) #设置col_names = F ,将自动生成列名:X1, X2, X3等 如果为真,输入的第一行将被用作列名,并且不会包含在数据帧中
![](https://img.haomeiwen.com/i25205178/6db4723d0b1324ec.jpg)
test2 <- read_csv('diffmiRNA.txt',col_names = c('id','miRNA','direction'))
![](https://img.haomeiwen.com/i25205178/47be6088335d7013.jpg)
test3 <- read_csv('diffmiRNA.txt',col_names = c('id','miRNA','direction'),skip=1) 注意与test2的区别
![](https://img.haomeiwen.com/i25205178/ee7ef09601f787eb.jpg)
![](https://img.haomeiwen.com/i25205178/b445cb90e2eda27c.jpg)
test4 <- read_csv('diffmiRNA.txt',col_names = c('id','miRNA','direction'),skip=1,na='hsa-mir-486-1') 将'hsa-mir-486-1'标记为na
![](https://img.haomeiwen.com/i25205178/597652a342755fdb.jpg)
test5 <- read_csv('diffmiRNA.txt',col_names = c('id','miRNA','direction'),skip=1,na='hsa-mir-486-1')%>% na.omit() 将标记为na的行删除
![](https://img.haomeiwen.com/i25205178/caa6b95532b45f53.jpg)
baseR读取数据
原始数据
![](https://img.haomeiwen.com/i25205178/978c49a391aad30e.jpg)
test1 <- read.table("clinical.txt", header = T, sep = "\t") header = T 第一行就做表头
![](https://img.haomeiwen.com/i25205178/237c5519cf99a417.jpg)
test2 <- read.table("clinical.txt", header = F, sep = "\t") header = F 系统自动分配行名
![](https://img.haomeiwen.com/i25205178/9955dad725d9319c.jpg)
test3 <- read.table("clinical.txt", header = T, sep = "\t",row.names = 1)row.names = 1设置第一列为行名
![](https://img.haomeiwen.com/i25205178/292e95b3e43746ad.jpg)
网友评论