美文网首页我爱编程
Tensorflow estimator 训练和迁移学习(一)

Tensorflow estimator 训练和迁移学习(一)

作者: 嗷呜镭钠 | 来源:发表于2018-02-24 10:51 被阅读0次
    以mnist数据集做训练

    学习tensorflow和它的高级API estimator

    由于Hnd手写字母训练集数量较少,直接训练误差可能较大,因此采用训练+迁移+微调的方式提升准确率。这是第一部分,在mnist数据集上训练。

    编写model_fn,在mnist数据集上训练

    import numpy as np
    import tensorflow as tf
    import os
    
    
    def cnn_model_no_top(features, mode, trainable):
        """
        :param features: 输入
        :param mode: estimator模式
        :param trainable: 该层的变量是否可训练
        :return: 不含最上层全连接层的模型
        """
        input_layer = tf.reshape(features, [-1, 28, 28, 1])
        conv1 = tf.layers.conv2d(inputs=input_layer, filters=32, kernel_size=[5, 5], padding="same", activation=tf.nn.relu, trainable=trainable)
        pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
        conv2 = tf.layers.conv2d(inputs=pool1, filters=64, kernel_size=[5, 5], padding="same", activation=tf.nn.relu, trainable=trainable)
        pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
        pool2_flat = tf.reshape(pool2, shape=[-1, 7 * 7 * 64])
        dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu, trainable=trainable)
        dropout = tf.layers.dropout(inputs=dense, rate=0.4, training=(mode == tf.estimator.ModeKeys.TRAIN))
        return dropout
    
    
    def cnn_model_fn(features, labels, mode, params):
        """
        用于构造estimator的model_fn
        :param features: 输入
        :param labels: 标签
        :param mode: 模式
        :param params: 用于训练,迁移学习和微调的dict类型参数
            nb_classes 输入的类别数
        :return: EstimatorSpec
        """
        logits_name = "predictions"
        labels = tf.one_hot(indices=tf.cast(labels, tf.int32), depth=params["nb_classes"])
        model_no_top = cnn_model_no_top(features["x"], mode, trainable=True)  # mnist是完整的训练
        logits = tf.layers.dense(inputs=model_no_top, units=params["nb_classes"], name=logits_name)
        predictions = {
            "classes": tf.argmax(input=logits, axis=1),
            "probabilities": tf.nn.softmax(logits, name="softmax_tensor")
        }
        if mode == tf.estimator.ModeKeys.PREDICT:
            return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
    
        loss = tf.losses.softmax_cross_entropy(onehot_labels=labels, logits=logits)
        if mode == tf.estimator.ModeKeys.TRAIN:
            global_step = tf.train.get_or_create_global_step()
            optimizer = tf.train.AdamOptimizer(learning_rate=0.0001)
            train_op = optimizer.minimize(loss, global_step)
            return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
    
        eval_metric_ops = {
            'accuracy': tf.metrics.accuracy(labels=tf.argmax(labels, 1),
                                            predictions=predictions['classes'],
                                            name='accuracy')
        }
        return tf.estimator.EstimatorSpec(
            mode=mode,
            loss=loss,
            eval_metric_ops=eval_metric_ops
        )
    

    开始训练

    首先准备训练数据和验证数据

    mnist = tf.contrib.learn.datasets.load_dataset("mnist")
    train_data = mnist.train.images  # Returns np.array
    train_labels = np.asarray(mnist.train.labels, dtype=np.int32)
    eval_data = mnist.test.images  # Returns np.array
    eval_labels = np.asarray(mnist.test.labels, dtype=np.int32)
    

    构造estimator

    mnist_classifier = tf.estimator.Estimator(model_fn=cnn_model_fn, model_dir="./mnist_model", params={
        "nb_classes": 10
    })
    

    开始训练

    train_input_fn = tf.estimator.inputs.numpy_input_fn(
        x={"x": train_data},
        y=train_labels,
        batch_size=100,
        num_epochs=None,
        shuffle=True
    )
    mnist_classifier.train(input_fn=train_input_fn, steps=2000)
    

    训练结束后,验证

    eval_input_fn = tf.estimator.inputs.numpy_input_fn(
        x={"x": eval_data},
        y=eval_labels,
        num_epochs=1,
        shuffle=False)
    eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
    print(eval_results)
    

    结果挺不错的

    {'accuracy': 0.9855, 'loss': 0.043955494, 'global_step': 2000}
    

    相关文章

      网友评论

        本文标题:Tensorflow estimator 训练和迁移学习(一)

        本文链接:https://www.haomeiwen.com/subject/ldkqxftx.html