Python中 list和np.array的区别:
data=[[1,2,3,4],
[2,1,3,4],
[1,0,0,1]]
data[:,0]
列表的索引必须是整数,而这里是tuple类型(:,1),所以出现了错误,只有矩阵才能通过这样的方式索引,因此我们常常需要将数据转换为矩阵:data[:,0]
data=mat([[1,2,3,4],
[2,1,3,4],
[1,0,0,1]])
feature1=data[:,0]
kMeans.py
#!/usr/bin/python
# -*- coding: utf-8 -*-
from numpy import *
import time
import matplotlib.pyplot as plt
def loadDataSet(filename):
'''
读取文件,返回的是list
:param filename:
:return:
'''
dataMat =[]
fr = open(filename)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = map(float, curLine)
dataMat.append(fltLine)
return dataMat
def distEclud(vecA,vecB):
'''
计算欧氏距离
:param vecA:
:param vecB:
:return:
'''
return sqrt(sum(power(vecA - vecB, 2)))
def randCent(dataSet,k):
'''
随机初始化质心
:param dataSet:
:param k:
:return:
'''
n = shape(dataSet)[1]
centroids = mat(zeros((k, n)))
for j in range(n):
minJ = min(dataSet[:, j])
rangeJ = float(max(dataSet[:, j]) - minJ)
centroids[:, j] = minJ + rangeJ * random.rand(k, 1)
return centroids
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0] #dataSet有80行 2列, m=80
clusterAssment = mat(zeros((m, 2)))#簇,用于存每个点的簇分类结果,1:簇索引 2:该点到簇质心的误差
centroids = createCent(dataSet, k) #得到质心
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m): #循环80次
minDist = inf; minIndex = -1
for j in range(k): #分别计算每个点到四个质心的距离,并将误差最大值付给minDist 索引付给minIndex
distJI = distMeas(centroids[j, :], dataSet[i, :])
if distJI < minDist:
minDist = distJI;minIndex = j
if clusterAssment[i, 0] != minIndex: #clusterAssment初始化80行 2列 全0
clusterChanged = True
clusterAssment[i, :] = minIndex, minDist**2
print centroids
for cent in range(k):#recalculate centroids
ptsInClust = dataSet[nonzero(clusterAssment[:, 0].A == cent)[0]]#获得同簇所有元素的在dataSet中的下标 .A是矩阵展成数组
centroids[cent, :] = mean(ptsInClust, axis=0) #同簇元素求平均值得到质心
return centroids, clusterAssment
def showCluster(dataSet, k, centroids, clusterAssment):
numSamples, dim = dataSet.shape
if dim != 2:
print ("Sorry! I can not draw because the dimension of your data is not 2!")
return 1
mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
if k > len(mark):
print ("Sorry! Your k is too large! ")
return 1
# draw all samples
for i in range(numSamples):
markIndex = int(clusterAssment[i, 0]) #为样本指定颜色
plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])
mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']
# draw the centroids
for i in range(k):
plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize = 12)
plt.show()
demo.py
import kMeans
from numpy import *
datMat = mat(kMeans.loadDataSet('testSet.txt'))
myCentroids, myClusterAssements = kMeans.kMeans(datMat, 4)
print shape(myClusterAssements)
kMeans.showCluster(datMat, 4, myCentroids, myClusterAssements)
Figure_1.png
Figure_2.png
由figure2可知,上面的k-means算法会有陷入局部最优解的情况。ClusterAssements的第一列是每个点到质心的误差,同簇数据的误差求取平均值就是SSE(SUM OF SQUARED ERROR)——————衡量聚类效果标准
改进的方法
1:合并最近的质心
2:合并时SSE增幅最小的质心
引出二分K-MEANS算法:
1.首先将所有数据当作一个簇
2.将每一个点都送入k-means进行k=2聚类
3.分别计算SSE,将SSE的在进行K=2聚类,直到最终的K要求
def biKmeans(dataSet, k, distMeas=distEclud):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))
centroid0 = mean(dataSet, axis=0).tolist()[0]
centList =[centroid0] #create a list with one centroid
for j in range(m):#calc initial Error
clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
while (len(centList) < k):
lowestSSE = inf
for i in range(len(centList)):
ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]#get the data points currently in cluster i
centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
sseSplit = sum(splitClustAss[:,1])#compare the SSE to the currrent minimum
sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
print "sseSplit, and notSplit: ",sseSplit,sseNotSplit
if (sseSplit + sseNotSplit) < lowestSSE:
bestCentToSplit = i
bestNewCents = centroidMat
bestClustAss = splitClustAss.copy()
lowestSSE = sseSplit + sseNotSplit
bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) #change 1 to 3,4, or whatever
bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
print 'the bestCentToSplit is: ',bestCentToSplit
print 'the len of bestClustAss is: ', len(bestClustAss)
centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]#replace a centroid with two best centroids
centList.append(bestNewCents[1,:].tolist()[0])
clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss#reassign new clusters, and SSE
return mat(centList), clusterAssment
k-means的思想还是比较容易理解的:
1.创建起始质心 2.计算数据到质心距离并对数据进行分配 3。同簇数据求均值得到质心
网友评论