来自: https://github.com/start-program/machinelearninginaction/blob/master/Ch08/regression.py
from numpy import *
import matplotlib.pyplot as plt
def loadDataSet(fileName): #general function to parse tab -delimited floats
numFeat = len(open(fileName).readline().split('\t')) - 1 #get number of fields
dataMat = []
labelMat = []
fr = open(fileName)
for line in fr.readlines():
lineArr =[]
curLine = line.strip().split('\t')
for i in range(numFeat):
lineArr.append(float(curLine[i]))
dataMat.append(lineArr)
labelMat.append(float(curLine[-1])) # last is label
return dataMat,labelMat
def standRegres(xArr,yArr):
xMat = mat(xArr)
yMat = mat(yArr).T
xTx = xMat.T*xMat
if linalg.det(xTx) == 0.0:
print "This matrix is singular, cannot do inverse"
return
ws = xTx.I * (xMat.T*yMat) # calc ws
return ws
xArr, yArr = loadDataSet('ex0.txt')
print('xArr', xArr[0:2])
print('yArr', yArr[0:2])
ws = standRegres(xArr, yArr)
print('ws', ws)
xMat = mat(xArr) # 2 dimension array to matrix
yMat = mat(yArr)
print('xMat', xMat[0:2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xMat[:, 1].flatten().A[0], yMat.T[:, 0].flatten().A[0]) # scatter plot
xCopy = xMat.copy()
xCopy.sort(0)
yHat = xCopy * ws # calc y
ax.plot(xCopy[:, 1], yHat) # draw y line
plt.show()
网友评论