红黑树详解

作者: 文哥的学习日记 | 来源:发表于2017-08-31 12:22 被阅读506次

    1、红黑树介绍

    红黑树又称R-B Tree,全称是Red-Black Tree,它是一种特殊的二叉查找树,红黑树的每个节点上都有存储位表示节点的颜色,可以是红或黑。
    红黑树具有以下五个特性:
    1)每个节点或者是黑色,或者是红色
    2)根节点是黑色
    3)每个叶子结点(NIL,这里的叶子结点不是传统的叶子结点,是指为空的叶子结点)是黑色。
    4)如果一个结点是红色的,则它的子结点必须是黑色的
    5)从一个结点到该结点的子孙结点的所有路径上包含相同数目的黑结点。
    根据特性5,可以确保没有一条路径会比其他路径长处两倍,因而,红黑树是相对接近平衡的二叉树。因为操作比如插入、删除和查找某个值的最坏情况时间都要求与树的高度成比例,这个在高度上的理论上限允许红黑树在最坏情况下都是高效的,而不同于普通的二叉查找树。

    为什么说红黑树有一条路径会比其他路径长处两倍呢,注意到性质4导致了路径不能有两个毗连的红色节点就足够了。最短的可能路径都是黑色节点,最长的可能路径有交替的红色和黑色节点。因为根据性质5所有最长的路径都有相同数目的黑色节点,这就表明了没有路径能多于任何其他路径的两倍长。

    红黑树示意图如下:

    2、红黑树的应用

    红黑树的应用比较广泛,主要是用它来存储有序的数据,它的时间复杂度是O(lgn)O(lgn),效率非常之高。

    例如,Java集合中的TreeSetTreeSet和TreeMapTreeMap,C++的STL中的Set、Map,以及Linux虚拟内存的管理,都是通过红黑树去实现的。

    3、红黑树的时间复杂度和相关证明

    红黑树的时间复杂度为: O(lgn)
    下面通过“数学归纳法”对红黑树的时间复杂度进行证明。

    定理:一棵含有n个节点的红黑树的高度至多为2log(n+1).

    证明:
    "一棵含有n个节点的红黑树的高度至多为2log(n+1)" 的逆否命题是 "高度为h的红黑树,它的包含的内节点个数至少为 2h/2-1个"。
    我们只需要证明逆否命题,即可证明原命题为真;即只需证明 "高度为h的红黑树,它的包含的内节点个数至少为 2h/2-1个"。

    从某个节点x出发(不包括该节点)到达一个叶节点的任意一条路径上,黑色节点的个数称为该节点的黑高度(x's black height),记为bh(x)。关于bh(x)有两点需要说明:
    第1点:根据红黑树的"特性(5) ,即从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点"可知,从节点x出发到达的所有的叶节点具有相同数目的黑节点。这也就意味着,bh(x)的值是唯一的!
    第2点:根据红黑色的"特性(4),即如果一个节点是红色的,则它的子节点必须是黑色的"可知,从节点x出发达到叶节点"所经历的黑节点数目">= "所经历的红节点的数目"。假设x是根节点,则可以得出结论"bh(x) >= h/2"。进而,我们只需证明 "高度为h的红黑树,它的包含的黑节点个数至少为 2bh(x)-1个"即可。

    到这里,我们将需要证明的定理已经由
    "一棵含有n个节点的红黑树的高度至多为2log(n+1)"
    转变成只需要证明
    "高度为h的红黑树,它的包含的内节点个数至少为 2bh(x)-1个"。

    下面通过"数学归纳法"开始论证高度为h的红黑树,它的包含的内节点个数至少为 2bh(x)-1个"。

    (01) 当树的高度h=0时,
    内节点个数是0,bh(x) 为0,2bh(x)-1 也为 0。显然,原命题成立。

    (02) 当h>0,且树的高度为 h-1 时,它包含的节点个数至少为 2bh(x)-1-1。这个是根据(01)推断出来的!

    下面,由树的高度为 h-1 的已知条件推出“树的高度为 h 时,它所包含的节点树为 2bh(x)-1”。

    当树的高度为 h 时,
    对于节点x(x为根节点),其黑高度为bh(x)。
    对于节点x的左右子树,它们黑高度为 bh(x) 或者 bh(x)-1。
    根据(02)的已知条件,我们已知 "x的左右子树,即高度为 h-1 的节点,它包含的节点至少为 2bh(x)-1-1 个";

    所以,节点x所包含的节点至少为 ( 2bh(x)-1-1 ) + ( 2bh(x)-1-1 ) + 1 = 2^bh(x)-1。即节点x所包含的节点至少为 2bh(x)-1。
    因此,原命题成立。

    由(01)、(02)得出,"高度为h的红黑树,它的包含的内节点个数至少为 2^bh(x)-1个"。
    因此,“一棵含有n个节点的红黑树的高度至多为2log(n+1)”。

    4、红黑树基本操作-左旋和右旋

    红黑树的基本操作是添加、删除。在对红黑树进行添加或删除之后,都会用到旋转方法。为什么呢?道理很简单,添加或者删除红黑树中的结点之后,红黑树就发生了变化,可能不满足红黑树的5条性质,也就不再是一棵红黑树了,而是一棵普通的树。而通过旋转,可以使这棵树重新成为红黑树。简单点说,旋转的目的是让树保持红黑树的特性。
    旋转包括两种:左旋和右旋。下面分别对这两种进行介绍:

    4.1 左旋


    对x进行左旋,意味着"将x变成一个左节点"。
    左旋的伪代码《算法导论》:参考上面的示意图和下面的伪代码,理解“红黑树T的节点x进行左旋”是如何进行的。
    LEFT-ROTATE(T, x)  
     y ← right[x]            // 前提:这里假设x的右孩子为y。下面开始正式操作
     right[x] ← left[y]      // 将 “y的左孩子” 设为 “x的右孩子”,即 将β设为x的右孩子
     p[left[y]] ← x          // 将 “x” 设为 “y的左孩子的父亲”,即 将β的父亲设为x
     p[y] ← p[x]             // 将 “x的父亲” 设为 “y的父亲”
     if p[x] = nil[T]       
     then root[T] ← y                 // 情况1:如果 “x的父亲” 是空节点,则将y设为根节点
     else if x = left[p[x]]  
               then left[p[x]] ← y    // 情况2:如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
               else right[p[x]] ← y   // 情况3:(x是它父节点的右孩子) 将y设为“x的父节点的右孩子”
     left[y] ← x             // 将 “x” 设为 “y的左孩子”
     p[x] ← y                // 将 “x的父节点” 设为 “y”
    

    理解左旋之后,看看下面一个更鲜明的例子。你可以先不看右边的结果,自己尝试一下。

    4.2 右旋


    对x进行左旋,意味着"将x变成一个左节点"。
    右旋的伪代码《算法导论》:参考上面的示意图和下面的伪代码,理解“红黑树T的节点y进行右旋”是如何进行的。
    RIGHT-ROTATE(T, y)  
     x ← left[y]             // 前提:这里假设y的左孩子为x。下面开始正式操作
     left[y] ← right[x]      // 将 “x的右孩子” 设为 “y的左孩子”,即 将β设为y的左孩子
     p[right[x]] ← y         // 将 “y” 设为 “x的右孩子的父亲”,即 将β的父亲设为y
     p[x] ← p[y]             // 将 “y的父亲” 设为 “x的父亲”
     if p[y] = nil[T]       
     then root[T] ← x                 // 情况1:如果 “y的父亲” 是空节点,则将x设为根节点
     else if y = right[p[y]]  
               then right[p[y]] ← x   // 情况2:如果 y是它父节点的右孩子,则将x设为“y的父节点的左孩子”
               else left[p[y]] ← x    // 情况3:(y是它父节点的左孩子) 将x设为“y的父节点的左孩子”
     right[x] ← y            // 将 “y” 设为 “x的右孩子”
     p[y] ← x                // 将 “y的父节点” 设为 “x”
    

    理解右旋之后,看看下面一个更鲜明的例子。你可以先不看右边的结果,自己尝试一下。


    旋转总结
    (01) 左旋 和 右旋 是相对的两个概念,原理类似。理解一个也就理解了另一个。
    (02) 下面谈谈如何区分 左旋 和 右旋。在实际应用中,若没有彻底理解 左旋 和 右旋,可能会将它们混淆。下面谈谈我对如何区分 左旋 和 右旋 的理解。

    仔细观察上面"左旋"和"右旋"的示意图。我们能清晰的发现,它们是对称的。无论是左旋还是右旋,被旋转的树,在旋转前是二叉查找树,并且旋转之后仍然是一颗二叉查找树。

    5、红黑树基本操作-添加

    将一个节点插入到红黑树中,需要执行哪些步骤呢?首先,将红黑树当作一颗二叉查找树,将节点插入;然后,将节点着色为红色;最后,通过旋转和重新着色等方法来修正该树,使之重新成为一颗红黑树。详细描述如下:

    第一步: 将红黑树当作一颗二叉查找树,将节点插入。
    红黑树本身就是一颗二叉查找树,将节点插入后,该树仍然是一颗二叉查找树。也就意味着,树的键值仍然是有序的。此外,无论是左旋还是右旋,若旋转之前这棵树是二叉查找树,旋转之后它一定还是二叉查找树。这也就意味着,任何的旋转和重新着色操作,都不会改变它仍然是一颗二叉查找树的事实。
    好吧?那接下来,我们就来想方设法的旋转以及重新着色,使这颗树重新成为红黑树!

    第二步:将插入的节点着色为"红色"。
    为什么着色成红色,而不是黑色呢?为什么呢?在回答之前,我们需要重新温习一下红黑树的特性:
    (1) 每个节点或者是黑色,或者是红色。
    (2) 根节点是黑色。
    (3) 每个叶子节点是黑色。 [注意:这里叶子节点,是指为空的叶子节点!]
    (4) 如果一个节点是红色的,则它的子节点必须是黑色的。
    (5) 从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。
    将插入的节点着色为红色,不会违背"特性(5)"!少违背一条特性,就意味着我们需要处理的情况越少。接下来,就要努力的让这棵树满足其它性质即可;满足了的话,它就又是一颗红黑树了。o(∩∩)o...哈哈

    第三步: 通过一系列的旋转或着色等操作,使之重新成为一颗红黑树。
    第二步中,将插入节点着色为"红色"之后,不会违背"特性(5)"。那它到底会违背哪些特性呢?
    对于"特性(1)",显然不会违背了。因为我们已经将它涂成红色了。
    对于"特性(2)",显然也不会违背。在第一步中,我们是将红黑树当作二叉查找树,然后执行的插入操作。而根据二叉查找数的特点,插入操作不会改变根节点。所以,根节点仍然是黑色。
    对于"特性(3)",显然不会违背了。这里的叶子节点是指的空叶子节点,插入非空节点并不会对它们造成影响。
    对于"特性(4)",是有可能违背的!
    那接下来,想办法使之"满足特性(4)",就可以将树重新构造成红黑树了。

    下面看看代码到底是怎样实现这三步的。
    添加操作的伪代码《算法导论》

    RB-INSERT(T, z)  
     y ← nil[T]                        // 新建节点“y”,将y设为空节点。
     x ← root[T]                       // 设“红黑树T”的根节点为“x”
     while x ≠ nil[T]                  // 找出要插入的节点“z”在二叉树T中的位置“y”
         do y ← x                      
            if key[z] < key[x]  
               then x ← left[x]  
               else x ← right[x]  
     p[z] ← y                          // 设置 “z的父亲” 为 “y”
     if y = nil[T]                     
        then root[T] ← z               // 情况1:若y是空节点,则将z设为根
        else if key[z] < key[y]        
                then left[y] ← z       // 情况2:若“z所包含的值” < “y所包含的值”,则将z设为“y的左孩子”
                else right[y] ← z      // 情况3:(“z所包含的值” >= “y所包含的值”)将z设为“y的右孩子” 
     left[z] ← nil[T]                  // z的左孩子设为空
     right[z] ← nil[T]                 // z的右孩子设为空。至此,已经完成将“节点z插入到二叉树”中了。
     color[z] ← RED                    // 将z着色为“红色”
     RB-INSERT-FIXUP(T, z)             // 通过RB-INSERT-FIXUP对红黑树的节点进行颜色修改以及旋转,让树T仍然是一颗红黑树
    

    结合伪代码以及为代码上面的说明,先理解RB-INSERT。理解了RB-INSERT之后,我们接着对 RB-INSERT-FIXUP的伪代码进行说明。

    添加修正操作的伪代码《算法导论》

    RB-INSERT-FIXUP(T, z)
    while color[p[z]] = RED                                                  // 若“当前节点(z)的父节点是红色”,则进行以下处理。
        do if p[z] = left[p[p[z]]]                                           // 若“z的父节点”是“z的祖父节点的左孩子”,则进行以下处理。
              then y ← right[p[p[z]]]                                        // 将y设置为“z的叔叔节点(z的祖父节点的右孩子)”
                   if color[y] = RED                                         // Case 1条件:叔叔是红色
                      then color[p[z]] ← BLACK                    ▹ Case 1   //  (01) 将“父节点”设为黑色。
                           color[y] ← BLACK                       ▹ Case 1   //  (02) 将“叔叔节点”设为黑色。
                           color[p[p[z]]] ← RED                   ▹ Case 1   //  (03) 将“祖父节点”设为“红色”。
                           z ← p[p[z]]                            ▹ Case 1   //  (04) 将“祖父节点”设为“当前节点”(红色节点)
                      else if z = right[p[z]]                                // Case 2条件:叔叔是黑色,且当前节点是右孩子
                              then z ← p[z]                       ▹ Case 2   //  (01) 将“父节点”作为“新的当前节点”。
                                   LEFT-ROTATE(T, z)              ▹ Case 2   //  (02) 以“新的当前节点”为支点进行左旋。
                              color[p[z]] ← BLACK                 ▹ Case 3   // Case 3条件:叔叔是黑色,且当前节点是左孩子。(01) 将“父节点”设为“黑色”。
                              color[p[p[z]]] ← RED                ▹ Case 3   //  (02) 将“祖父节点”设为“红色”。
                              RIGHT-ROTATE(T, p[p[z]])            ▹ Case 3   //  (03) 以“祖父节点”为支点进行右旋。
           else (same as then clause with "right" and "left" exchanged)      // 若“z的父节点”是“z的祖父节点的右孩子”,将上面的操作中“right”和“left”交换位置,然后依次执行。
    color[root[T]] ← BLACK
    

    根据被插入节点的父节点的情况,可以将"当节点z被着色为红色节点,并插入二叉树"划分为三种情况来处理。
    ① 情况说明:被插入的节点是根节点。
    处理方法:直接把此节点涂为黑色。
    ② 情况说明:被插入的节点的父节点是黑色。
    处理方法:什么也不需要做。节点被插入后,仍然是红黑树。
    ③ 情况说明:被插入的节点的父节点是红色。
    处理方法:那么,该情况与红黑树的“特性(5)”相冲突。这种情况下,被插入节点是一定存在非空祖父节点的;进一步的讲,被插入节点也一定存在叔叔节点(即使叔叔节点为空,我们也视之为存在,空节点本身就是黑色节点)。理解这点之后,我们依据"叔叔节点的情况",将这种情况进一步划分为3种情况(Case)。三种情况(Case)处理问题的核心思路都是:将红色的节点移到根节点;然后,将根节点设为黑色。下面对它们详细进行介绍。

    5.1(Case 1)叔叔是红色

    现象说明
    当前节点(即,被插入节点)的父节点是红色,且当前节点的祖父节点的另一个子节点(叔叔节点)也是红色。

    处理策略
    (01) 将“父节点”设为黑色。
    (02) 将“叔叔节点”设为黑色。
    (03) 将“祖父节点”设为“红色”。
    (04) 将“祖父节点”设为“当前节点”(红色节点);即,之后继续对“当前节点”进行操作。

    操作解释
    “当前节点”和“父节点”都是红色,违背“特性(4)”。所以,将“父节点”设置“黑色”以解决这个问题。
    但是,将“父节点”由“红色”变成“黑色”之后,违背了“特性(5)”:因为,包含“父节点”的分支的黑色节点的总数增加了1。 解决这个问题的办法是:将“祖父节点”由“黑色”变成红色,同时,将“叔叔节点”由“红色”变成“黑色”。关于这里,说明几点:第一,为什么“祖父节点”之前是黑色?这个应该很容易想明白,因为在变换操作之前,该树是红黑树,“父节点”是红色,那么“祖父节点”一定是黑色。 第二,为什么将“祖父节点”由“黑色”变成红色,同时,将“叔叔节点”由“红色”变成“黑色”;能解决“包含‘父节点’的分支的黑色节点的总数增加了1”的问题。这个道理也很简单。“包含‘父节点’的分支的黑色节点的总数增加了1” 同时也意味着 “包含‘祖父节点’的分支的黑色节点的总数增加了1”,既然这样,我们通过将“祖父节点”由“黑色”变成“红色”以解决“包含‘祖父节点’的分支的黑色节点的总数增加了1”的问题; 但是,这样处理之后又会引起另一个问题“包含‘叔叔’节点的分支的黑色节点的总数减少了1”,现在我们已知“叔叔节点”是“红色”,将“叔叔节点”设为“黑色”就能解决这个问题。 所以,将“祖父节点”由“黑色”变成红色,同时,将“叔叔节点”由“红色”变成“黑色”;就解决了该问题。
    按照上面的步骤处理之后:当前节点、父节点、叔叔节点之间都不会违背红黑树特性,但祖父节点却不一定。若此时,祖父节点是根节点,直接将祖父节点设为“黑色”,那就完全解决这个问题了;若祖父节点不是根节点,那我们需要将“祖父节点”设为“新的当前节点”,接着对“新的当前节点”进行分析。

    示意图

    5.2(Case 2)叔叔是黑色,且当前节点是右孩子

    现象说明
    当前节点(即,被插入节点)的父节点是红色,叔叔节点是黑色,且当前节点是其父节点的右孩子

    处理策略
    (01) 将“父节点”作为“新的当前节点”。
    (02) 以“新的当前节点”为支点进行左旋。

    操作解释
    首先,将“父节点”作为“新的当前节点”;接着,以“新的当前节点”为支点进行左旋。 为了便于理解,我们先说明第(02)步,再说明第(01)步;为了便于说明,我们设置“父节点”的代号为F(Father),“当前节点”的代号为S(Son)。
    为什么要“以F为支点进行左旋”呢?根据已知条件可知:S是F的右孩子。而之前我们说过,我们处理红黑树的核心思想:将红色的节点移到根节点;然后,将根节点设为黑色。既然是“将红色的节点移到根节点”,那就是说要不断的将破坏红黑树特性的红色节点上移(即向根方向移动)。 而S又是一个右孩子,因此,我们可以通过“左旋”来将S上移!
    按照上面的步骤(以F为支点进行左旋)处理之后:若S变成了根节点,那么直接将其设为“黑色”,就完全解决问题了;若S不是根节点,那我们需要执行步骤(01),即“将F设为‘新的当前节点’”。那为什么不继续以S为新的当前节点继续处理,而需要以F为新的当前节点来进行处理呢?这是因为“左旋”之后,F变成了S的“子节点”,即S变成了F的父节点;而我们处理问题的时候,需要从下至上(由叶到根)方向进行处理;也就是说,必须先解决“孩子”的问题,再解决“父亲”的问题;所以,我们执行步骤(01):将“父节点”作为“新的当前节点”。

    示意图

    5.3(Case 3)叔叔是黑色,且当前节点是左孩子

    现象说明
    当前节点(即,被插入节点)的父节点是红色,叔叔节点是黑色,且当前节点是其父节点的左孩子

    处理策略
    (01) 将“父节点”设为“黑色”。
    (02) 将“祖父节点”设为“红色”。
    (03) 以“祖父节点”为支点进行右旋。

    操作解释
    为了便于说明,我们设置“当前节点”为S(Original Son),“兄弟节点”为B(Brother),“叔叔节点”为U(Uncle),“父节点”为F(Father),祖父节点为G(Grand-Father)。
    S和F都是红色,违背了红黑树的“特性(4)”,我们可以将F由“红色”变为“黑色”,就解决了“违背‘特性(4)’”的问题;但却引起了其它问题:违背特性(5),因为将F由红色改为黑色之后,所有经过F的分支的黑色节点的个数增加了1。那我们如何解决“所有经过F的分支的黑色节点的个数增加了1”的问题呢? 我们可以通过“将G由黑色变成红色”,同时“以G为支点进行右旋”来解决。

    示意图

    6、红黑树基本操作-删除

    如果需要删除的节点有两个儿子,那么问题可以被转化成删除另一个只有一个儿子的节点的问题。对于二叉查找树,在删除带有两个非叶子儿子的节点的时候,我们找到要么在它的左子树中的最大元素、要么在它的右子树中的最小元素,并把它的值转移到要删除的节点中。我们接着删除我们从中复制出值的那个节点,它必定有少于两个非叶子的儿子。因为只是复制了一个值,不违反任何性质,这就把问题简化为如何删除最多有一个儿子的节点的问题。它不关心这个节点是最初要删除的节点还是我们从中复制出值的那个节点。
    我们只需要讨论删除只有一个儿子的节点(如果它两个儿子都为空,即均为叶子,我们任意将其中一个看作它的儿子)。如果我们删除一个红色节点(此时该节点的儿子将都为叶子节点),它的父亲和儿子一定是黑色的。所以我们可以简单的用它的黑色儿子替换它,并不会破坏性质3和性质4。通过被删除节点的所有路径只是少了一个红色节点,这样可以继续保证性质5。另一种简单情况是在被删除节点是黑色而它的儿子是红色的时候。如果只是去除这个黑色节点,用它的红色儿子顶替上来的话,会破坏性质5,但是如果我们重绘它的儿子为黑色,则曾经通过它的所有路径将通过它的黑色儿子,这样可以继续保持性质5。
    需要进一步讨论的是在要删除的节点和它的儿子二者都是黑色的时候,这是一种复杂的情况。我们首先把要删除的节点替换为它的儿子。出于方便,称呼这个儿子为N(在新的位置上),称呼它的兄弟(它父亲的另一个儿子)为S。在下面的示意图中,我们还是使用P称呼N的父亲,SL称呼S的左儿子,SR称呼S的右儿子。
    如果N和它初始的父亲是黑色,则删除它的父亲导致通过N的路径都比不通过它的路径少了一个黑色节点。因为这违反了性质5,树需要被重新平衡。有几种情形需要考虑:
    情形1: N是新的根。在这种情形下,我们就做完了。我们从所有路径去除了一个黑色节点,而新根是黑色的,所以性质都保持着。注意: 在情形2、5和6下,我们假定N是它父亲的左儿子。如果它是右儿子,则在这些情形下的左和右应当对调。

    情形2: S是红色。在这种情形下我们在N的父亲上做左旋转,把红色兄弟转换成N的祖父,我们接着对调N的父亲和祖父的颜色。完成这两个操作后,尽管所有路径上黑色节点的数目没有改变,但现在N有了一个黑色的兄弟和一个红色的父亲(它的新兄弟是黑色因为它是红色S的一个儿子),所以我们可以接下去按情形4、情形5或情形6来处理。

    情形3: N的父亲、S和S的儿子都是黑色的。在这种情形下,我们简单的重绘S为红色。结果是通过S的所有路径,它们就是以前不通过N的那些路径,都少了一个黑色节点。因为删除N的初始的父亲使通过N的所有路径少了一个黑色节点,这使事情都平衡了起来。但是,通过P的所有路径现在比不通过P的路径少了一个黑色节点,所以仍然违反性质5。要修正这个问题,我们要从情形1开始,在P上做重新平衡处理。

    情形4: S和S的儿子都是黑色,但是N的父亲是红色。在这种情形下,我们简单的交换N的兄弟和父亲的颜色。这不影响不通过N的路径的黑色节点的数目,但是它在通过N的路径上对黑色节点数目增加了一,添补了在这些路径上删除的黑色节点。


    情形5: S是黑色,S的左儿子是红色,S的右儿子是黑色,而N是它父亲的左儿子。在这种情形下我们在S上做右旋转,这样S的左儿子成为S的父亲和N的新兄弟。我们接着交换S和它的新父亲的颜色。所有路径仍有同样数目的黑色节点,但是现在N有了一个黑色兄弟,他的右儿子是红色的,所以我们进入了情形6。N和它的父亲都不受这个变换的影响。
    情形6: S是黑色,S的右儿子是红色,而N是它父亲的左儿子。在这种情形下我们在N的父亲上做左旋转,这样S成为N的父亲(P)和S的右儿子的父亲。我们接着交换N的父亲和S的颜色,并使S的右儿子为黑色。子树在它的根上的仍是同样的颜色,所以性质3没有被违反。但是,N现在增加了一个黑色祖先: 要么N的父亲变成黑色,要么它是黑色而S被增加为一个黑色祖父。所以,通过N的路径都增加了一个黑色节点。此时,如果一个路径不通过N,则有两种可能性:它通过N的新兄弟。那么它以前和现在都必定通过S和N的父亲,而它们只是交换了颜色。所以路径保持了同样数目的黑色节点。它通过N的新叔父,S的右儿子。那么它以前通过S、S的父亲和S的右儿子,但是现在只通过S,它被假定为它以前的父亲的颜色,和S的右儿子,它被从红色改变为黑色。合成效果是这个路径通过了同样数目的黑色节点。在任何情况下,在这些路径上的黑色节点数目都没有改变。所以我们恢复了性质4。在示意图中的白色节点可以是红色或黑色,但是在变换前后都必须指定相同的颜色。

    相关文章

      网友评论

        本文标题:红黑树详解

        本文链接:https://www.haomeiwen.com/subject/lkxxjxtx.html