美文网首页
100 个 pandas 数据分析函数总结

100 个 pandas 数据分析函数总结

作者: 逍遥_yjz | 来源:发表于2022-12-13 08:54 被阅读0次

    经过一段时间的整理,本期将分享我认为比较常规的100个实用函数,这些函数大致可以分为六类,分别是统计汇总函数、数据清洗函数、数据筛选、绘图与元素级运算函数、时间序列函数和其他函数。

    一、统计汇总函数

    数据分析过程中,必然要做一些数据的统计汇总工作,那么对于这一块的数据运算有哪些可用的函数可以帮助到我们呢?具体看如下几张表。

    图片 图片
    import pandas as pd
    import numpy as np
    x = pd.Series(np.random.normal(2,3,1000))
    y = 3*x + 10 + pd.Series(np.random.normal(1,2,1000))
    
    # 计算x与y的相关系数
    print(x.corr(y))
    
    # 计算y的偏度
    print(y.skew())
    
    # 计算y的统计描述值
    print(x.describe())
    
    z = pd.Series(['A','B','C']).sample(n = 1000, replace = True)
    # 重新修改z的行索引
    z.index = range(1000)
    # 按照z分组,统计y的组内平均值
    y.groupby(by = z).aggregate(np.mean)
    
    图片 图片
    # 统计z中个元素的频次
    print(z.value_counts())
    
    a = pd.Series([1,5,10,15,25,30])
    # 计算a中各元素的累计百分比
    print(a.cumsum() / a.cumsum()[a.size - 1])
    
    图片

    二、数据清洗函数

    同样,数据清洗工作也是必不可少的工作,在如下表格中罗列了常有的数据清洗的函数。

    图片
    x = pd.Series([10,13,np.nan,17,28,19,33,np.nan,27])
    #检验序列中是否存在缺失值
    print(x.hasnans)
    
    # 将缺失值填充为平均值
    print(x.fillna(value = x.mean()))
    
    # 前向填充缺失值
    print(x.ffill())
    
    图片 图片
    income = pd.Series(['12500元','8000元','8500元','15000元','9000元'])
    # 将收入转换为整型
    print(income.str[:-1].astype(int))
    
    gender = pd.Series(['男','女','女','女','男','女'])
    # 性别因子化处理
    print(gender.factorize())
    
    house = pd.Series(['大宁金茂府 | 3室2厅 | 158.32平米 | 南 | 精装',
                       '昌里花园 | 2室2厅 | 104.73平米 | 南 | 精装',
                       '纺大小区 | 3室1厅 | 68.38平米 | 南 | 简装'])
    # 取出二手房的面积,并转换为浮点型
    house.str.split('|').str[2].str.strip().str[:-2].astype(float)
    
    图片

    三、数据筛选

    数据分析中如需对变量中的数值做子集筛选时,可以巧妙的使用下表中的几个函数,其中部分函数既可以使用在序列身上,也基本可以使用在数据框对象中。

    图片
    np.random.seed(1234)
    x = pd.Series(np.random.randint(10,20,10))
    
    # 筛选出16以上的元素
    print(x.loc[x > 16])
    
    print(x.compress(x > 16))
    
    # 筛选出13~16之间的元素
    print(x[x.between(13,16)])
    
    # 取出最大的三个元素
    print(x.nlargest(3))
    
    y = pd.Series(['ID:1 name:张三 age:24 income:13500',
                   'ID:2 name:李四 age:27 income:25000',
                   'ID:3 name:王二 age:21 income:8000'])
    # 取出年龄,并转换为整数
    print(y.str.findall('age:(\d+)').str[0].astype(int))
    
    图片

    **
    **

    四、绘图与元素级函数

    图片
    np.random.seed(123)
    import matplotlib.pyplot as plt
    x = pd.Series(np.random.normal(10,3,1000))
    # 绘制x直方图
    x.hist()
    # 显示图形
    plt.show()
    
    # 绘制x的箱线图
    x.plot(kind='box')
    plt.show()
    
    installs = pd.Series(['1280万','6.7亿','2488万','1892万','9877','9877万','1.2亿'])
    # 将安装量统一更改为“万”的单位
    def transform(x):
        if x.find('亿') != -1:
            res = float(x[:-1])*10000
        elif x.find('万') != -1:
            res = float(x[:-1])
        else:
            res = float(x)/10000
        return res
    installs.apply(transform)
    
    图片 图片 图片

    五、时间序列函数

    图片 图片 图片

    六、其他函数

    图片
    import numpy as np
    import pandas as pd
    
    np.random.seed(112)
    x = pd.Series(np.random.randint(8,18,6))
    print(x)
    # 对x中的元素做一阶差分
    print(x.diff())
    
    # 对x中的元素做降序处理
    print(x.sort_values(ascending = False))
    
    y = pd.Series(np.random.randint(8,16,100))
    # 将y中的元素做排重处理,并转换为列表对象
    y.unique().tolist()
    
    图片 图片

    相关文章

      网友评论

          本文标题:100 个 pandas 数据分析函数总结

          本文链接:https://www.haomeiwen.com/subject/lkzfqdtx.html