减少锁持有时间
只用在需要线程安全的方法上加锁
减小锁粒度
将大对象(这个对象可能会被很多线程访问),拆成小对象,大大增加并行度,降低锁竞争。降低了锁的竞争,偏向锁,轻量级锁成功率才会提高。最最典型的减小锁粒度的案例就是ConcurrentHashMap。
锁分离
最常见的锁分离就是读写锁 ReadWriteLock,根据功能进行分离成读锁和写锁,这样读读不互斥,读写互斥,写写互斥,即保证了线程安全,又提高了性能。读写分离思想可以延伸,只要操作互不影响,锁就可以分离。比如下面的LinkedBlockingQueue 从头部取出,从尾部放数据
image
锁粗化
通常情况下,为了保证多线程间的有效并发,会要求每个线程持有锁的时间尽量短,即在使用完公共资源后,应该立即释放锁。但是,凡事都有一个度,如果对同一个锁不停的进行请求、同步和释放,其本身也会消耗系统宝贵的资源,反而不利于性能的优化 。
public void demoMethod(){
synchronized(lock){
//do sth.
}
//做其他不需要的同步的工作,但能很快执行完毕
synchronized(lock){
//do sth.
}
}
这种情况,根据锁粗化的思想,应该合并
public void demoMethod(){
//整合成一次锁请求
synchronized(lock){
//do sth.
//做其他不需要的同步的工作,但能很快执行完毕
}
}
当然这是有前提的,前提就是中间的那些不需要同步的工作是很快执行完成的。
锁消除
在即时编译器时,如果发现不可能被共享的对象,则可以消除这些对象的锁操作。
也许你会觉得奇怪,既然有些对象不可能被多线程访问,那为什么要加锁呢?写代码时直接不加锁不就好了。
但是有时,这些锁并不是程序员所写的,有的是JDK实现中就有锁的,比如Vector和StringBuffer这样的类,它们中的很多方法都是有锁的。当我们在一些不会有线程安全的情况下使用这些类的方法时,达到某些条件时,编译器会将锁消除来提高性能。
public static void main(String args[]) throws InterruptedException {
long start = System.currentTimeMillis();
for (int i = 0; i < 2000000; i++) {
createStringBuffer("JVM", "Diagnosis");
}
long bufferCost = System.currentTimeMillis() - start;
System.out.println("craeteStringBuffer: " + bufferCost + " ms");
}
public static String createStringBuffer(String s1, String s2) {
StringBuffer sb = new StringBuffer();
sb.append(s1);
sb.append(s2);
return sb.toString();
}
StringBuffer.append是一个同步操作,但是StringBuffer却是一个局部变量,并且方法也并没有把StringBuffer返回,所以不可能会有多线程去访问它,那么此时StringBuffer中的同步操作就是没有意义的。
开启锁消除是在JVM参数上设置的,当然需要在server模式下:
-server -XX:+DoEscapeAnalysis -XX:+EliminateLocks
并且要开启逃逸分析。
逃逸分析的作用呢,就是看看变量是否有可能逃出作用域的范围:
比如上述的StringBuffer,上述代码中craeteStringBuffer的返回是一个String,所以这个局部变量StringBuffer在其他地方都不会被使用。如果将craeteStringBuffer改成
public static StringBuffer craeteStringBuffer(String s1, String s2) {
StringBuffer sb = new StringBuffer();
sb.append(s1);
sb.append(s2);
return sb;
}
那么这个 StringBuffer被返回后,是有可能被任何其他地方所使用的(譬如被主函数将返回结果put进map啊等等)。那么JVM的逃逸分析可以分析出,这个局部变量 StringBuffer逃出了它的作用域。
所以基于逃逸分析,JVM可以判断,如果这个局部变量StringBuffer并没有逃出它的作用域,那么可以确定这个StringBuffer并不会被多线程所访问,那么就可以把这些多余的锁给去掉来提高性能
网友评论