美文网首页
浅谈大数据技术

浅谈大数据技术

作者: 六六六六六六66 | 来源:发表于2017-11-30 19:10 被阅读0次

    王者 14310116049

    转载自:http://www.elecfans.com/tongxin/yuntongxinyuanquan/2017/1117/581411.html,有删节

    【嵌牛导读】大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

    【嵌牛鼻子】大数据

    【嵌牛提问】大数据的技术有哪些?

    【嵌牛正文】

    什么是大数据

    在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。

    对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。

    毫无疑问,世界上所有关注开发技术的人都意识到“大数据”对企业商务所蕴含的潜在价值,其目的都在于解决在企业发展过程中各种业务数据增长所带来的痛苦。

    现实是,许多问题阻碍了大数据技术的发展和实际应用。

    因为一种成功的技术,需要一些衡量的标准。现在我们可以通过几个基本要素来衡量一下大数据技术,这就是——流处理、并行性、摘要索引和可视化。

    大数据技术涵盖哪些内容?

    1、流处理

    伴随着业务发展的步调,以及业务流程的复杂化,我们的注意力越来越集中在“数据流”而非“数据集”上面。

    决策者感兴趣的是紧扣其组织机构的命脉,并获取实时的结果。他们需要的是能够处理随时发生的数据流的架构,当前的数据库技术并不适合数据流处理。

    例如,计算一组数据的平均值,可以使用一个传统的脚本实现。但对于移动数据平均值的计算,不论是到达、增长还是一个又一个的单元,有更高效的算法。如果你想构建数据仓库,并执行任意的数据分析、统计,开源的产品R或者类似于SAS的商业产品就可以实现。但是你想创建的是一个数据流统计集,对此逐步添加或移除数据块,进行移动平均计算,而且数据库不存在或者尚不成熟。

    数据流周边的生态系统有欠发达。换言之,如果你正在与一家供应商洽谈一个大数据项目,那么你必须知道数据流处理对你的项目而言是否重要,并且供应商是否有能力提供。

    2、并行化

    大数据的定义有许多种,以下这种相对有用。“小数据”的情形类似于桌面环境,磁盘存储能力在1GB到10GB之间,“中数据”的数据量在100GB到1TB之间,“大数据”分布式的存储在多台机器上,包含1TB到多个PB的数据。

    如果你在分布式数据环境中工作,并且想在很短的时间内处理数据,这就需要分布式处理。

    并行处理在分布式数据中脱颖而出,Hadoop是一个分布式/并行处理领域广为人知的例子。Hadoop包含一个大型分布式的文件系统,支持分布式/并行查询。

    3、摘要索引

    摘要索引是一个对数据创建预计算摘要,以加速查询运行的过程。摘要索引的问题是,你必须为要执行的查询做好计划,因此它有所限制。

    数据增长飞速,对摘要索引的要求远不会停止,不论是长期考虑还是短期,供应商必须对摘要索引的制定有一个确定的策略。

    4、数据可视化

    可视化工具有两大类。

    探索性可视化描述工具可以帮助决策者和分析师挖掘不同数据之间的联系,这是一种可视化的洞察力。类似的工具有Tableau、TIBCO和QlikView,这是一类。

    叙事可视化工具被设计成以独特的方式探索数据。例如,如果你想以可视化的方式在一个时间序列中按照地域查看一个企业的销售业绩,可视化格式会被预先创建。数据会按照地域逐月展示,并根据预定义的公式排序。供应商PercepTIve Pixel就属于这一类。

    大数据技术有哪些

    1、跨粒度计算(In-DatabaseCompuTIng)

    Z-Suite支持各种常见的汇总,还支持几乎全部的专业统计函数。得益于跨粒度计算技术,Z-Suite数据分析引擎将找寻出最优化的计算方案,继而把所有开销较大的、昂贵的计算都移动到数据存储的地方直接计算,我们称之为库内计算(In-Database)。这一技术大大减少了数据移动,降低了通讯负担,保证了高性能数据分析。

    2、并行计算(MPP CompuTIng)

    Z-Suite是基于MPP架构的商业智能平台,她能够把计算分布到多个计算节点,再在指定节点将计算结果汇总输出。Z-Suite能够充分利用各种计算和存储资源,不管是服务器还是普通的PC,她对网络条件也没有严苛的要求。作为横向扩展的大数据平台,Z-Suite能够充分发挥各个节点的计算能力,轻松实现针对TB/PB级数据分析的秒级响应。

    3、列存储 (Column-Based)

    Z-Suite是列存储的。基于列存储的数据集市,不读取无关数据,能降低读写开销,同时提高I/O 的效率,从而大大提高查询性能。另外,列存储能够更好地压缩数据,一般压缩比在5 -10倍之间,这样一来,数据占有空间降低到传统存储的1/5到1/10 。良好的数据压缩技术,节省了存储设备和内存的开销,却大大了提升计算性能。

    4、内存计算

    得益于列存储技术和并行计算技术,Z-Suite能够大大压缩数据,并同时利用多个节点的计算能力和内存容量。一般地,内存访问速度比磁盘访问速度要快几百倍甚至上千倍。通过内存计算,CPU直接从内存而非磁盘上读取数据并对数据进行计算。内存计算是对传统数据处理方式的一种加速,是实现大数据分析的关键应用技术。

    注意事项

    大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

    相关文章

      网友评论

          本文标题:浅谈大数据技术

          本文链接:https://www.haomeiwen.com/subject/lmkbbxtx.html