美文网首页以太坊以太坊源码分析
以太坊源码深入分析(7)-- 以太坊Downloader源码分析

以太坊源码深入分析(7)-- 以太坊Downloader源码分析

作者: 老鱼游啊游 | 来源:发表于2018-05-03 20:22 被阅读1085次

    上一节分析到Fetcher用于同步网络节点的新区块和新的交易数据,如果新区块和本地最新的区块相隔距离较远,说明本地区块数据太旧,Fetcher就不会同步这些区块。这时候就要借助Downloader来同步完整的区块数据。

    一,启动Downloader
    ProtocolManager初始化的时候会进行Downloader的初始化:

    func New(mode SyncMode, stateDb ethdb.Database, mux *event.TypeMux, chain BlockChain, lightchain LightChain, dropPeer peerDropFn) *Downloader {
        if lightchain == nil {
            lightchain = chain
        }
    
        dl := &Downloader{
            mode:           mode,
            stateDB:        stateDb,
            mux:            mux,
            queue:          newQueue(),
            peers:          newPeerSet(),
            rttEstimate:    uint64(rttMaxEstimate),
            rttConfidence:  uint64(1000000),
            blockchain:     chain,
            lightchain:     lightchain,
            dropPeer:       dropPeer,
            headerCh:       make(chan dataPack, 1),
            bodyCh:         make(chan dataPack, 1),
            receiptCh:      make(chan dataPack, 1),
            bodyWakeCh:     make(chan bool, 1),
            receiptWakeCh:  make(chan bool, 1),
            headerProcCh:   make(chan []*types.Header, 1),
            quitCh:         make(chan struct{}),
            stateCh:        make(chan dataPack),
            stateSyncStart: make(chan *stateSync),
            trackStateReq:  make(chan *stateReq),
        }
        go dl.qosTuner()
        go dl.stateFetcher()
        return dl
    }
    

    首先初始化Downloader对象的成员,然后启动dl.qosTuner() goroutine计算请求回路时间,启动dl.stateFetcher() goroutine 开启Downloader状态监控。

    ProtocolManager收到新的区块消息广播或者有新的P2P网络节点加入的时候会调用ProtocolManager的 synchronise(peer *peer)方法,这时候会调用Downloader的Synchronise(peer.id, pHead, pTd, mode)方法。

    Synchronise方法,重置d.queue和d.peers,清空d.bodyWakeCh, d.receiptWakeCh,d.headerCh, d.bodyCh, d.receiptCh,d.headerProcCh。调用d.syncWithPeer(p, hash, td)方法:

    func (d *Downloader) syncWithPeer(p *peerConnection, hash common.Hash, td *big.Int) (err error) {
        d.mux.Post(StartEvent{})
        defer func() {
            // reset on error
            if err != nil {
                d.mux.Post(FailedEvent{err})
            } else {
                d.mux.Post(DoneEvent{})
            }
        }()
        if p.version < 62 {
            return errTooOld
        }
    
        log.Debug("Synchronising with the network", "peer", p.id, "eth", p.version, "head", hash, "td", td, "mode", d.mode)
        defer func(start time.Time) {
            log.Debug("Synchronisation terminated", "elapsed", time.Since(start))
        }(time.Now())
    
        // Look up the sync boundaries: the common ancestor and the target block
        latest, err := d.fetchHeight(p)
        if err != nil {
            return err
        }
        height := latest.Number.Uint64()
    
        origin, err := d.findAncestor(p, height)
        if err != nil {
            return err
        }
        d.syncStatsLock.Lock()
        if d.syncStatsChainHeight <= origin || d.syncStatsChainOrigin > origin {
            d.syncStatsChainOrigin = origin
        }
        d.syncStatsChainHeight = height
        d.syncStatsLock.Unlock()
    
        // Ensure our origin point is below any fast sync pivot point
        pivot := uint64(0)
        if d.mode == FastSync {
            if height <= uint64(fsMinFullBlocks) {
                origin = 0
            } else {
                pivot = height - uint64(fsMinFullBlocks)
                if pivot <= origin {
                    origin = pivot - 1
                }
            }
        }
        d.committed = 1
        if d.mode == FastSync && pivot != 0 {
            d.committed = 0
        }
        // Initiate the sync using a concurrent header and content retrieval algorithm
        d.queue.Prepare(origin+1, d.mode)
        if d.syncInitHook != nil {
            d.syncInitHook(origin, height)
        }
    
        fetchers := []func() error{
            func() error { return d.fetchHeaders(p, origin+1, pivot) }, // Headers are always retrieved
            func() error { return d.fetchBodies(origin + 1) },          // Bodies are retrieved during normal and fast sync
            func() error { return d.fetchReceipts(origin + 1) },        // Receipts are retrieved during fast sync
            func() error { return d.processHeaders(origin+1, pivot, td) },
        }
        if d.mode == FastSync {
            fetchers = append(fetchers, func() error { return d.processFastSyncContent(latest) })
        } else if d.mode == FullSync {
            fetchers = append(fetchers, d.processFullSyncContent)
        }
        return d.spawnSync(fetchers)
    }
    

    首先调用latest, err := d.fetchHeight(p)获取到peer节点最新的区块头,这个方法有点绕,我们来分析一下:

    func (d *Downloader) fetchHeight(p *peerConnection) (*types.Header, error) {
        p.log.Debug("Retrieving remote chain height")
    
        // Request the advertised remote head block and wait for the response
        head, _ := p.peer.Head()
        go p.peer.RequestHeadersByHash(head, 1, 0, false)
    
        ttl := d.requestTTL()
        timeout := time.After(ttl)
        for {
            select {
            case <-d.cancelCh:
                return nil, errCancelBlockFetch
    
            case packet := <-d.headerCh:
                // Discard anything not from the origin peer
                if packet.PeerId() != p.id {
                    log.Debug("Received headers from incorrect peer", "peer", packet.PeerId())
                    break
                }
                // Make sure the peer actually gave something valid
                headers := packet.(*headerPack).headers
                if len(headers) != 1 {
                    p.log.Debug("Multiple headers for single request", "headers", len(headers))
                    return nil, errBadPeer
                }
                head := headers[0]
                p.log.Debug("Remote head header identified", "number", head.Number, "hash", head.Hash())
                return head, nil
    
            case <-timeout:
                p.log.Debug("Waiting for head header timed out", "elapsed", ttl)
                return nil, errTimeout
    
            case <-d.bodyCh:
            case <-d.receiptCh:
                // Out of bounds delivery, ignore
            }
        }
    }
    

    1,调用peer.RequestHeadersByHash(head, 1, 0, false),给网络节点发送一个GetBlockHeadersMsg的消息
    2,然后阻塞住线程,直到收到d.headerCh或者timeout
    3,本地节点会收到网络节点的BlockHeadersMsg的消息返回
    4,调用downloader.DeliverHeaders(p.id, headers)
    5,这时候会把p.id和headers打包发送给d.headerCh
    6,这时候select收到d.headerCh,阻塞打开,并返回header内容

    syncWithPeer() 方法接着调用 d.findAncestor(p, height)来获取本地节点和网络节点共同的祖先:

    func (d *Downloader) findAncestor(p *peerConnection, height uint64) (uint64, error) {
        // Figure out the valid ancestor range to prevent rewrite attacks
        floor, ceil := int64(-1), d.lightchain.CurrentHeader().Number.Uint64()
    
        if d.mode == FullSync {
            ceil = d.blockchain.CurrentBlock().NumberU64()
        } else if d.mode == FastSync {
            ceil = d.blockchain.CurrentFastBlock().NumberU64()
        }
        if ceil >= MaxForkAncestry {
            floor = int64(ceil - MaxForkAncestry)
        }
        p.log.Debug("Looking for common ancestor", "local", ceil, "remote", height)
    
        // Request the topmost blocks to short circuit binary ancestor lookup
        head := ceil
        if head > height {
            head = height
        }
        from := int64(head) - int64(MaxHeaderFetch)
        if from < 0 {
            from = 0
        }
        // Span out with 15 block gaps into the future to catch bad head reports
        limit := 2 * MaxHeaderFetch / 16
        count := 1 + int((int64(ceil)-from)/16)
        if count > limit {
            count = limit
        }
        go p.peer.RequestHeadersByNumber(uint64(from), count, 15, false)
    
        // Wait for the remote response to the head fetch
        number, hash := uint64(0), common.Hash{}
    
        ttl := d.requestTTL()
        timeout := time.After(ttl)
    
        for finished := false; !finished; {
            select {
            case <-d.cancelCh:
                return 0, errCancelHeaderFetch
    
            case packet := <-d.headerCh:
                // Discard anything not from the origin peer
                if packet.PeerId() != p.id {
                    log.Debug("Received headers from incorrect peer", "peer", packet.PeerId())
                    break
                }
                // Make sure the peer actually gave something valid
                headers := packet.(*headerPack).headers
                if len(headers) == 0 {
                    p.log.Warn("Empty head header set")
                    return 0, errEmptyHeaderSet
                }
                // Make sure the peer's reply conforms to the request
                for i := 0; i < len(headers); i++ {
                    if number := headers[i].Number.Int64(); number != from+int64(i)*16 {
                        p.log.Warn("Head headers broke chain ordering", "index", i, "requested", from+int64(i)*16, "received", number)
                        return 0, errInvalidChain
                    }
                }
                // Check if a common ancestor was found
                finished = true
                for i := len(headers) - 1; i >= 0; i-- {
                    // Skip any headers that underflow/overflow our requested set
                    if headers[i].Number.Int64() < from || headers[i].Number.Uint64() > ceil {
                        continue
                    }
                    // Otherwise check if we already know the header or not
                    if (d.mode == FullSync && d.blockchain.HasBlock(headers[i].Hash(), headers[i].Number.Uint64())) || (d.mode != FullSync && d.lightchain.HasHeader(headers[i].Hash(), headers[i].Number.Uint64())) {
                        number, hash = headers[i].Number.Uint64(), headers[i].Hash()
    
                        // If every header is known, even future ones, the peer straight out lied about its head
                        if number > height && i == limit-1 {
                            p.log.Warn("Lied about chain head", "reported", height, "found", number)
                            return 0, errStallingPeer
                        }
                        break
                    }
                }
    
            case <-timeout:
                p.log.Debug("Waiting for head header timed out", "elapsed", ttl)
                return 0, errTimeout
    
            case <-d.bodyCh:
            case <-d.receiptCh:
                // Out of bounds delivery, ignore
            }
        }
        // If the head fetch already found an ancestor, return
        if !common.EmptyHash(hash) {
            if int64(number) <= floor {
                p.log.Warn("Ancestor below allowance", "number", number, "hash", hash, "allowance", floor)
                return 0, errInvalidAncestor
            }
            p.log.Debug("Found common ancestor", "number", number, "hash", hash)
            return number, nil
        }
        // Ancestor not found, we need to binary search over our chain
        start, end := uint64(0), head
        if floor > 0 {
            start = uint64(floor)
        }
        for start+1 < end {
            // Split our chain interval in two, and request the hash to cross check
            check := (start + end) / 2
    
            ttl := d.requestTTL()
            timeout := time.After(ttl)
    
            go p.peer.RequestHeadersByNumber(check, 1, 0, false)
    
            // Wait until a reply arrives to this request
            for arrived := false; !arrived; {
                select {
                case <-d.cancelCh:
                    return 0, errCancelHeaderFetch
    
                case packer := <-d.headerCh:
                    // Discard anything not from the origin peer
                    if packer.PeerId() != p.id {
                        log.Debug("Received headers from incorrect peer", "peer", packer.PeerId())
                        break
                    }
                    // Make sure the peer actually gave something valid
                    headers := packer.(*headerPack).headers
                    if len(headers) != 1 {
                        p.log.Debug("Multiple headers for single request", "headers", len(headers))
                        return 0, errBadPeer
                    }
                    arrived = true
    
                    // Modify the search interval based on the response
                    if (d.mode == FullSync && !d.blockchain.HasBlock(headers[0].Hash(), headers[0].Number.Uint64())) || (d.mode != FullSync && !d.lightchain.HasHeader(headers[0].Hash(), headers[0].Number.Uint64())) {
                        end = check
                        break
                    }
                    header := d.lightchain.GetHeaderByHash(headers[0].Hash()) // Independent of sync mode, header surely exists
                    if header.Number.Uint64() != check {
                        p.log.Debug("Received non requested header", "number", header.Number, "hash", header.Hash(), "request", check)
                        return 0, errBadPeer
                    }
                    start = check
    
                case <-timeout:
                    p.log.Debug("Waiting for search header timed out", "elapsed", ttl)
                    return 0, errTimeout
    
                case <-d.bodyCh:
                case <-d.receiptCh:
                    // Out of bounds delivery, ignore
                }
            }
        }
        // Ensure valid ancestry and return
        if int64(start) <= floor {
            p.log.Warn("Ancestor below allowance", "number", start, "hash", hash, "allowance", floor)
            return 0, errInvalidAncestor
        }
        p.log.Debug("Found common ancestor", "number", start, "hash", hash)
        return start, nil
    }
    

    1,调用peer.RequestHeadersByNumber(uint64(from), count, 15, false),获取header。这里传入 count和 15,指从本地最高的header往前数192个区块的头,每16个区块取一个区块头。为了后面select收到d.headerCh时加以验证。
    2,select收到了headers,遍历header,看是否在本地是否存在这个header,如果有,并且不为空,就说明找到共同的祖先,返回祖先number
    3,如果没有找到共同的祖先,再重新从本地的区块链MaxForkAncestry起的一半的位置开始取区块头,一一验证是否跟网络节点返回的header一致,如果有就说明有共同的祖先,并返回,没有的话就返回0.

    继续syncWithPeer()方法,找到同步的轴心的pivot,最后把要同步的数据和同步的方法传给d.spawnSync(fetchers),并执行。d.spawnSync(fetchers)挨个执行传入的同步方法。

    二,Downloader同步数据方法
    fetchHeaders(),fetchBodies() , fetchReceipts()

    func (d *Downloader) fetchHeaders(p *peerConnection, from uint64, pivot uint64) error {
        p.log.Debug("Directing header downloads", "origin", from)
        defer p.log.Debug("Header download terminated")
    
        // Create a timeout timer, and the associated header fetcher
        skeleton := true            // Skeleton assembly phase or finishing up
        request := time.Now()       // time of the last skeleton fetch request
        timeout := time.NewTimer(0) // timer to dump a non-responsive active peer
        <-timeout.C                 // timeout channel should be initially empty
        defer timeout.Stop()
    
        var ttl time.Duration
        getHeaders := func(from uint64) {
            request = time.Now()
    
            ttl = d.requestTTL()
            timeout.Reset(ttl)
    
            if skeleton {
                p.log.Trace("Fetching skeleton headers", "count", MaxHeaderFetch, "from", from)
                go p.peer.RequestHeadersByNumber(from+uint64(MaxHeaderFetch)-1, MaxSkeletonSize, MaxHeaderFetch-1, false)
            } else {
                p.log.Trace("Fetching full headers", "count", MaxHeaderFetch, "from", from)
                go p.peer.RequestHeadersByNumber(from, MaxHeaderFetch, 0, false)
            }
        }
        // Start pulling the header chain skeleton until all is done
        getHeaders(from)
    
        for {
            select {
            case <-d.cancelCh:
                return errCancelHeaderFetch
    
            case packet := <-d.headerCh:
                // Make sure the active peer is giving us the skeleton headers
                if packet.PeerId() != p.id {
                    log.Debug("Received skeleton from incorrect peer", "peer", packet.PeerId())
                    break
                }
                headerReqTimer.UpdateSince(request)
                timeout.Stop()
    
                // If the skeleton's finished, pull any remaining head headers directly from the origin
                if packet.Items() == 0 && skeleton {
                    skeleton = false
                    getHeaders(from)
                    continue
                }
                // If no more headers are inbound, notify the content fetchers and return
                if packet.Items() == 0 {
                    // Don't abort header fetches while the pivot is downloading
                    if atomic.LoadInt32(&d.committed) == 0 && pivot <= from {
                        p.log.Debug("No headers, waiting for pivot commit")
                        select {
                        case <-time.After(fsHeaderContCheck):
                            getHeaders(from)
                            continue
                        case <-d.cancelCh:
                            return errCancelHeaderFetch
                        }
                    }
                    // Pivot done (or not in fast sync) and no more headers, terminate the process
                    p.log.Debug("No more headers available")
                    select {
                    case d.headerProcCh <- nil:
                        return nil
                    case <-d.cancelCh:
                        return errCancelHeaderFetch
                    }
                }
                headers := packet.(*headerPack).headers
    
                // If we received a skeleton batch, resolve internals concurrently
                if skeleton {
                    filled, proced, err := d.fillHeaderSkeleton(from, headers)
                    if err != nil {
                        p.log.Debug("Skeleton chain invalid", "err", err)
                        return errInvalidChain
                    }
                    headers = filled[proced:]
                    from += uint64(proced)
                }
                // Insert all the new headers and fetch the next batch
                if len(headers) > 0 {
                    p.log.Trace("Scheduling new headers", "count", len(headers), "from", from)
                    select {
                    case d.headerProcCh <- headers:
                    case <-d.cancelCh:
                        return errCancelHeaderFetch
                    }
                    from += uint64(len(headers))
                }
                getHeaders(from)
    
            case <-timeout.C:
                if d.dropPeer == nil {
                    // The dropPeer method is nil when `--copydb` is used for a local copy.
                    // Timeouts can occur if e.g. compaction hits at the wrong time, and can be ignored
                    p.log.Warn("Downloader wants to drop peer, but peerdrop-function is not set", "peer", p.id)
                    break
                }
                // Header retrieval timed out, consider the peer bad and drop
                p.log.Debug("Header request timed out", "elapsed", ttl)
                headerTimeoutMeter.Mark(1)
                d.dropPeer(p.id)
    
                // Finish the sync gracefully instead of dumping the gathered data though
                for _, ch := range []chan bool{d.bodyWakeCh, d.receiptWakeCh} {
                    select {
                    case ch <- false:
                    case <-d.cancelCh:
                    }
                }
                select {
                case d.headerProcCh <- nil:
                case <-d.cancelCh:
                }
                return errBadPeer
            }
        }
    }
    

    1,getHeaders()调用peer.RequestHeadersByNumber()方法 获取网络节点的headers。
    2,有两种获取方式,首先走的是skeleton方式,从查找到的共同祖先区块+192个区块位置开始,每隔192个区块,获取128个区块头。非skeleton方式,从共同祖先区块开始,获取192个区块头。
    3,如果第一种方式获取不到区块头,则执行第二种获取方式,如果第二种方式还是没有获取到区块头的话,直接返回
    4,如果是skeleton获取到的,调用fillHeaderSkeleton()方法加入到skeleton header chain
    5,然后调整from值,再递归调用getHeaders()方法

    func (d *Downloader) fillHeaderSkeleton(from uint64, skeleton []*types.Header) ([]*types.Header, int, error) {
        log.Debug("Filling up skeleton", "from", from)
        d.queue.ScheduleSkeleton(from, skeleton)
    
        var (
            deliver = func(packet dataPack) (int, error) {
                pack := packet.(*headerPack)
                return d.queue.DeliverHeaders(pack.peerId, pack.headers, d.headerProcCh)
            }
            expire   = func() map[string]int { return d.queue.ExpireHeaders(d.requestTTL()) }
            throttle = func() bool { return false }
            reserve  = func(p *peerConnection, count int) (*fetchRequest, bool, error) {
                return d.queue.ReserveHeaders(p, count), false, nil
            }
            fetch    = func(p *peerConnection, req *fetchRequest) error { return p.FetchHeaders(req.From, MaxHeaderFetch) }
            capacity = func(p *peerConnection) int { return p.HeaderCapacity(d.requestRTT()) }
            setIdle  = func(p *peerConnection, accepted int) { p.SetHeadersIdle(accepted) }
        )
        err := d.fetchParts(errCancelHeaderFetch, d.headerCh, deliver, d.queue.headerContCh, expire,
            d.queue.PendingHeaders, d.queue.InFlightHeaders, throttle, reserve,
            nil, fetch, d.queue.CancelHeaders, capacity, d.peers.HeaderIdlePeers, setIdle, "headers")
    
        log.Debug("Skeleton fill terminated", "err", err)
    
        filled, proced := d.queue.RetrieveHeaders()
        return filled, proced, err
    }
    

    a) 把skeleton的headers加入queue.ScheduleSkeleton调度队列,
    b) 然后执行d.fetchParts()方法。
    d.fetchParts()方法主要做了这几件事情
    1,对收到的headers执行d.queue.DeliverHeaders()方法。
    2,如果d.queue.PendingHeaders有pending的headers,调用d.peers.HeaderIdlePeers获取到idle的peers
    3,调用d.queue.ReserveHeaders把pending的headers储备到idle的peers里面
    4,用idle的peers调用p.FetchHeaders(req.From, MaxHeaderFetch)去获取headers
    c) 最后执行d.queue.RetrieveHeaders(),获取到filled进去的headers

    其他同步区块数据的方法d.fetchBodies() , d.fetchReceipts() 和fetchHeaders()流程类似,还更简单一些。

    三,Downloader同步数据过程
    d.processHeaders(), d.processFastSyncContent(latest) , d.processFullSyncContent
    1,d.processHeaders() 方法

    func (d *Downloader) processHeaders(origin uint64, pivot uint64, td *big.Int) error {
        // Keep a count of uncertain headers to roll back
        rollback := []*types.Header{}
        defer func() {
            if len(rollback) > 0 {
                // Flatten the headers and roll them back
                hashes := make([]common.Hash, len(rollback))
                for i, header := range rollback {
                    hashes[i] = header.Hash()
                }
                lastHeader, lastFastBlock, lastBlock := d.lightchain.CurrentHeader().Number, common.Big0, common.Big0
                if d.mode != LightSync {
                    lastFastBlock = d.blockchain.CurrentFastBlock().Number()
                    lastBlock = d.blockchain.CurrentBlock().Number()
                }
                d.lightchain.Rollback(hashes)
                curFastBlock, curBlock := common.Big0, common.Big0
                if d.mode != LightSync {
                    curFastBlock = d.blockchain.CurrentFastBlock().Number()
                    curBlock = d.blockchain.CurrentBlock().Number()
                }
                log.Warn("Rolled back headers", "count", len(hashes),
                    "header", fmt.Sprintf("%d->%d", lastHeader, d.lightchain.CurrentHeader().Number),
                    "fast", fmt.Sprintf("%d->%d", lastFastBlock, curFastBlock),
                    "block", fmt.Sprintf("%d->%d", lastBlock, curBlock))
            }
        }()
    
        // Wait for batches of headers to process
        gotHeaders := false
    
        for {
            select {
            case <-d.cancelCh:
                return errCancelHeaderProcessing
    
            case headers := <-d.headerProcCh:
                // Terminate header processing if we synced up
                if len(headers) == 0 {
                    // Notify everyone that headers are fully processed
                    for _, ch := range []chan bool{d.bodyWakeCh, d.receiptWakeCh} {
                        select {
                        case ch <- false:
                        case <-d.cancelCh:
                        }
                    }
                    if d.mode != LightSync {
                        head := d.blockchain.CurrentBlock()
                        if !gotHeaders && td.Cmp(d.blockchain.GetTd(head.Hash(), head.NumberU64())) > 0 {
                            return errStallingPeer
                        }
                    }
                    if d.mode == FastSync || d.mode == LightSync {
                        head := d.lightchain.CurrentHeader()
                        if td.Cmp(d.lightchain.GetTd(head.Hash(), head.Number.Uint64())) > 0 {
                            return errStallingPeer
                        }
                    }
                    // Disable any rollback and return
                    rollback = nil
                    return nil
                }
                // Otherwise split the chunk of headers into batches and process them
                gotHeaders = true
    
                for len(headers) > 0 {
                    // Terminate if something failed in between processing chunks
                    select {
                    case <-d.cancelCh:
                        return errCancelHeaderProcessing
                    default:
                    }
                    // Select the next chunk of headers to import
                    limit := maxHeadersProcess
                    if limit > len(headers) {
                        limit = len(headers)
                    }
                    chunk := headers[:limit]
    
                    // In case of header only syncing, validate the chunk immediately
                    if d.mode == FastSync || d.mode == LightSync {
                        // Collect the yet unknown headers to mark them as uncertain
                        unknown := make([]*types.Header, 0, len(headers))
                        for _, header := range chunk {
                            if !d.lightchain.HasHeader(header.Hash(), header.Number.Uint64()) {
                                unknown = append(unknown, header)
                            }
                        }
                        // If we're importing pure headers, verify based on their recentness
                        frequency := fsHeaderCheckFrequency
                        if chunk[len(chunk)-1].Number.Uint64()+uint64(fsHeaderForceVerify) > pivot {
                            frequency = 1
                        }
                        if n, err := d.lightchain.InsertHeaderChain(chunk, frequency); err != nil {
                            // If some headers were inserted, add them too to the rollback list
                            if n > 0 {
                                rollback = append(rollback, chunk[:n]...)
                            }
                            log.Debug("Invalid header encountered", "number", chunk[n].Number, "hash", chunk[n].Hash(), "err", err)
                            return errInvalidChain
                        }
                        // All verifications passed, store newly found uncertain headers
                        rollback = append(rollback, unknown...)
                        if len(rollback) > fsHeaderSafetyNet {
                            rollback = append(rollback[:0], rollback[len(rollback)-fsHeaderSafetyNet:]...)
                        }
                    }
                    // Unless we're doing light chains, schedule the headers for associated content retrieval
                    if d.mode == FullSync || d.mode == FastSync {
                        // If we've reached the allowed number of pending headers, stall a bit
                        for d.queue.PendingBlocks() >= maxQueuedHeaders || d.queue.PendingReceipts() >= maxQueuedHeaders {
                            select {
                            case <-d.cancelCh:
                                return errCancelHeaderProcessing
                            case <-time.After(time.Second):
                            }
                        }
                        // Otherwise insert the headers for content retrieval
                        inserts := d.queue.Schedule(chunk, origin)
                        if len(inserts) != len(chunk) {
                            log.Debug("Stale headers")
                            return errBadPeer
                        }
                    }
                    headers = headers[limit:]
                    origin += uint64(limit)
                }
                // Signal the content downloaders of the availablility of new tasks
                for _, ch := range []chan bool{d.bodyWakeCh, d.receiptWakeCh} {
                    select {
                    case ch <- true:
                    default:
                    }
                }
            }
        }
    }
    

    1,收到从fetchHeaders()方法 中d.headerProcCh发送过来的headers
    2,如果是FastSync或者LightSync模式,直接调用lightchain.InsertHeaderChain(chunk, frequency)插入到headerChain。
    3,如果是FullSync或者FastSyn模式,调用d.queue.Schedule(chunk, origin),放入downloader.queue来调度

    2,processFastSyncContent() 方法

    func (d *Downloader) processFastSyncContent(latest *types.Header) error {
        // Start syncing state of the reported head block. This should get us most of
        // the state of the pivot block.
        stateSync := d.syncState(latest.Root)
        defer stateSync.Cancel()
        go func() {
            if err := stateSync.Wait(); err != nil && err != errCancelStateFetch {
                d.queue.Close() // wake up WaitResults
            }
        }()
        // Figure out the ideal pivot block. Note, that this goalpost may move if the
        // sync takes long enough for the chain head to move significantly.
        pivot := uint64(0)
        if height := latest.Number.Uint64(); height > uint64(fsMinFullBlocks) {
            pivot = height - uint64(fsMinFullBlocks)
        }
        // To cater for moving pivot points, track the pivot block and subsequently
        // accumulated download results separatey.
        var (
            oldPivot *fetchResult   // Locked in pivot block, might change eventually
            oldTail  []*fetchResult // Downloaded content after the pivot
        )
        for {
            // Wait for the next batch of downloaded data to be available, and if the pivot
            // block became stale, move the goalpost
            results := d.queue.Results(oldPivot == nil) // Block if we're not monitoring pivot staleness
            if len(results) == 0 {
                // If pivot sync is done, stop
                if oldPivot == nil {
                    return stateSync.Cancel()
                }
                // If sync failed, stop
                select {
                case <-d.cancelCh:
                    return stateSync.Cancel()
                default:
                }
            }
            if d.chainInsertHook != nil {
                d.chainInsertHook(results)
            }
            if oldPivot != nil {
                results = append(append([]*fetchResult{oldPivot}, oldTail...), results...)
            }
            // Split around the pivot block and process the two sides via fast/full sync
            if atomic.LoadInt32(&d.committed) == 0 {
                latest = results[len(results)-1].Header
                if height := latest.Number.Uint64(); height > pivot+2*uint64(fsMinFullBlocks) {
                    log.Warn("Pivot became stale, moving", "old", pivot, "new", height-uint64(fsMinFullBlocks))
                    pivot = height - uint64(fsMinFullBlocks)
                }
            }
            P, beforeP, afterP := splitAroundPivot(pivot, results)
            if err := d.commitFastSyncData(beforeP, stateSync); err != nil {
                return err
            }
            if P != nil {
                // If new pivot block found, cancel old state retrieval and restart
                if oldPivot != P {
                    stateSync.Cancel()
    
                    stateSync = d.syncState(P.Header.Root)
                    defer stateSync.Cancel()
                    go func() {
                        if err := stateSync.Wait(); err != nil && err != errCancelStateFetch {
                            d.queue.Close() // wake up WaitResults
                        }
                    }()
                    oldPivot = P
                }
                // Wait for completion, occasionally checking for pivot staleness
                select {
                case <-stateSync.done:
                    if stateSync.err != nil {
                        return stateSync.err
                    }
                    if err := d.commitPivotBlock(P); err != nil {
                        return err
                    }
                    oldPivot = nil
    
                case <-time.After(time.Second):
                    oldTail = afterP
                    continue
                }
            }
            // Fast sync done, pivot commit done, full import
            if err := d.importBlockResults(afterP); err != nil {
                return err
            }
        }
    }
    

    1,同步最新的状态信息,的到最新的pivot值
    2,不停的从d.queue 的result缓存中获取要处理的result数据
    3,如果results数据为空,同时pivot也为空的时候,说明同步完成了,并返回
    4,根据pivot值和results计算:pivot值对应的result,和pivot值之前的results和pivot值之后的results
    5,调用commitFastSyncData把pivot值之前的results 插入本地区块链中,带上收据和交易数据
    6,更新同步状态信息后,把pivot值对应的result 调用commitPivotBlock插入本地区块链中,并调用FastSyncCommitHead,记录这个pivot的hash值
    7,调用d.importBlockResults把pivot值之后的results插入本地区块链中,这时候不插入区块交易收据数据。

    3,processFullSyncContent()方法

    func (d *Downloader) processFullSyncContent() error {
        for {
            results := d.queue.Results(true)
            if len(results) == 0 {
                return nil
            }
            if d.chainInsertHook != nil {
                d.chainInsertHook(results)
            }
            if err := d.importBlockResults(results); err != nil {
                return err
            }
        }
    }
    
    func (d *Downloader) importBlockResults(results []*fetchResult) error {
        // Check for any early termination requests
        if len(results) == 0 {
            return nil
        }
        select {
        case <-d.quitCh:
            return errCancelContentProcessing
        default:
        }
        // Retrieve the a batch of results to import
        first, last := results[0].Header, results[len(results)-1].Header
        log.Debug("Inserting downloaded chain", "items", len(results),
            "firstnum", first.Number, "firsthash", first.Hash(),
            "lastnum", last.Number, "lasthash", last.Hash(),
        )
        blocks := make([]*types.Block, len(results))
        for i, result := range results {
            blocks[i] = types.NewBlockWithHeader(result.Header).WithBody(result.Transactions, result.Uncles)
        }
        if index, err := d.blockchain.InsertChain(blocks); err != nil {
            log.Debug("Downloaded item processing failed", "number", results[index].Header.Number, "hash", results[index].Header.Hash(), "err", err)
            return errInvalidChain
        }
        return nil
    }
    

    processFullSyncContent方法比较简单:直接获取缓存的results数据,并插入到本地区块链中。

    总结:
    Downloader看似非常复杂,其实逻辑还好,如果没有light模式,读起来会好很多。其实light模式不太成熟,基本也没什么用。fast模式比full模式逻辑上面多了一个pivot,处理起来就复杂很多。但是fast模式在本地存储了收据数据,大大减少了区块交易验证的时间。如果要更清楚明白fast模式的原理,可以看看以太坊白皮书关于fast模式同步这一部分:https://github.com/ethereum/go-ethereum/pull/1889

    相关文章

      网友评论

      • 梦中可:hello,麻烦请教个问题 ,不知你看完代码了解了fast sync为什么同步的数据要少?最后贴的那篇文章我也没看明白数据为什么会少。fast sync还需要同步state数据,body也照样同步了,按理说是同步的数据要多的
        梦中可:@老鱼游啊游 多谢回复。这个也是我的理解,只是最后那个链接的文章(https://github.com/ethereum/go-ethereum/pull/1889)里面有个表格写着fast sync的数据比full sync的数据明显要少让我比较困惑。哦,有可能是full sync本地验证区块的时候会多生成一些数据,表格里面的数据只是最终同步完成db数据的大小,并不是网络传输数据的大小
        老鱼游啊游:@梦中可 fast sync 只会多同步数据不会少。full模式同步过来的数据需要本地验证,然后生成相关日志,而fast模式会把这些数据都同步过来,而跳过耗时的本地验证,为了加快获取最新block的速度

      本文标题:以太坊源码深入分析(7)-- 以太坊Downloader源码分析

      本文链接:https://www.haomeiwen.com/subject/lpfnlftx.html