美文网首页
R-dplyr 数据转换

R-dplyr 数据转换

作者: JY_Liu | 来源:发表于2020-03-15 15:13 被阅读0次

    filter()
    arrange()
    select()
    mutate()
    summarize()
    dplyr函数不会修改输入,保存结果需要进行赋值

    1.filter() 筛选行

    filter(data, expr1, expr2..., preserve = F)
    data: 数据框
    expr: 用于筛选数据框的表达式
    filter()函数自动排除NA值
    e.g. nycflights13包中的flights数据为例

    > nycflights13::flights
    # A tibble: 336,776 x 19
        year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay carrier
       <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>     <dbl> <chr>  
     1  2013     1     1      517            515         2      830            819        11 UA     
     2  2013     1     1      533            529         4      850            830        20 UA     
     3  2013     1     1      542            540         2      923            850        33 AA     
     4  2013     1     1      544            545        -1     1004           1022       -18 B6     
     5  2013     1     1      554            600        -6      812            837       -25 DL     
     6  2013     1     1      554            558        -4      740            728        12 UA     
     7  2013     1     1      555            600        -5      913            854        19 B6     
     8  2013     1     1      557            600        -3      709            723       -14 EV     
     9  2013     1     1      557            600        -3      838            846        -8 B6     
    10  2013     1     1      558            600        -2      753            745         8 AA     
    # ... with 336,766 more rows, and 9 more variables: flight <int>, tailnum <chr>, origin <chr>,
    #   dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
    
    > filter(flights, month == 1 | day == 1)
    # A tibble: 37,198 x 19
        year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay carrier
       <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>     <dbl> <chr>  
     1  2013     1     1      517            515         2      830            819        11 UA     
     2  2013     1     1      533            529         4      850            830        20 UA     
     3  2013     1     1      542            540         2      923            850        33 AA     
     4  2013     1     1      544            545        -1     1004           1022       -18 B6     
     5  2013     1     1      554            600        -6      812            837       -25 DL     
     6  2013     1     1      554            558        -4      740            728        12 UA     
     7  2013     1     1      555            600        -5      913            854        19 B6     
     8  2013     1     1      557            600        -3      709            723       -14 EV     
     9  2013     1     1      557            600        -3      838            846        -8 B6     
    10  2013     1     1      558            600        -2      753            745         8 AA     
    # ... with 37,188 more rows, and 9 more variables: flight <int>, tailnum <chr>, origin <chr>,
    #   dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
    
    # 找出UA,AA,DL运行的航班
    > filter(flights, carrier %in% c('UA','AA','DL'))
    
    #找出延误至少1小时,但飞行过程弥补回30分钟的航班
    > filter(flights, dep_delay >= 60, dep_delay > arr_delay + 30)
    
    #0点到6点出发的航班
    > filter(flights, dep_time >= 0, dep_time <= 600)
    

    between(x, arg1, arg2) 函数可用用于简化 (x >= arg1 & x <= arg2) 计算

    filter(flights, dep_time >= 0, dep_time <= 600) 等价于 filter(flights, between(dep_time, 0 , 600))
    

    2.arrange() 排列行

    改变行的顺序
    arrange(data, col/expr ....)
    data: 进行排序的数据框
    col: 用于排序的列
    expr: 表达式
    默认按照升序进行排列,desc() 函数可进行降序排列。默认将缺失值NA排在最后。
    e.g.

    # 寻找延误时间最长的航班
    arrange(flights, desc(dep_delay))
    
    #将缺失值排在最前面
    arrange(flights, desc(is.na(dep_delay)))
    

    3. select() 选择列

    选择特定的列
    select(data, var/expr)
    e.g.

    #选择year,month,day 三列
    select(flights, year, month, day)
    #选择 year到day之间的所有列
    select(flights, year:day)
    #选择除去 year到day 之间的所有列
    select(flights, -(year:day))
    

    辅助函数:
    start_with(" ") 匹配开头字段格式
    ends_with(" ") 匹配末尾字段格式
    contains(" ") 匹配包含字段格式,不区分大小写
    one_of(var) 匹配包含变量var的列
    matches(" ") 匹配正则表达式

    • 重命名变量:
      rename()
    rename(flights, tail_num = tailnum)
    
    • 将所选变量移至开头:
      select() 结合 everything()
    # 选择 time_hour, aittime 变量并移至开头
    select(flights, time_hour, airtime, everything())
    

    4. mutate()添加列

    mutate(data, colname = expr)
    添加新列,且新列是现有列的函数

    mutate(flights,
           gain = arr_delay - depdalay,
           speed = distance / airtime * 60
           )
    

    若只保留新列,可用 transmute() 函数

    5. summarize() 函数

    将数据框进行分析后折叠成一行
    summarize(data, var=func(...))
    summarize() 函数常与 group_by() 函数联用。group_by() 函数可将分析单位从整个数据集改为单个分组。
    使用 ungroup() 函数取消分组。
    e.g.

    > by_day <- group_by(flights, year,month,day)
    > summarize(by_day, delay = mean(dep_delay, na.rm=TRUE))
    # A tibble: 365 x 4
    # Groups:   year, month [12]
        year month   day delay
       <int> <int> <int> <dbl>
     1  2013     1     1 11.5 
     2  2013     1     2 13.9 
     3  2013     1     3 11.0 
     4  2013     1     4  8.95
     5  2013     1     5  5.73
     6  2013     1     6  7.15
     7  2013     1     7  5.42
     8  2013     1     8  2.55
     9  2013     1     9  2.28
    10  2013     1    10  2.84
    # ... with 355 more rows
    
    # 区别于select()函数,group_by()在保留数据集所有数据的基础上对单个分组进行分析
    > by.day <- select(flights, year,month,day)
    > summarize(by.day, delay = mean(dep_delay, na.rm=TRUE))
    Error in mean(dep_delay, na.rm = TRUE) : 找不到对象'dep_delay'
    

    可使用管道符 %>% 减少变量命名,增强代码可读性
    e.g.

    # delay <- flights %>% group_by(year, month, day) %>% summarize(mean(dep_delay, na.rm = TRUE))  等同于
    # > by_day <- group_by(flights, year,month,day)
    # > summarize(by_day, delay = mean(dep_delay, na.rm=TRUE))
    
    > delay <- flights %>% group_by(year, month, day) %>% summarize(mean(dep_delay, na.rm = TRUE)) 
    > delay
    # A tibble: 365 x 4
    # Groups:   year, month [12]
        year month   day `mean(dep_delay, na.rm = TRUE)`
       <int> <int> <int>                           <dbl>
     1  2013     1     1                           11.5 
     2  2013     1     2                           13.9 
     3  2013     1     3                           11.0 
     4  2013     1     4                            8.95
     5  2013     1     5                            5.73
     6  2013     1     6                            7.15
     7  2013     1     7                            5.42
     8  2013     1     8                            2.55
     9  2013     1     9                            2.28
    10  2013     1    10                            2.84
    
    • 摘要函数中,聚合函数与逻辑筛选可进行组合使用
    not_cacelled %>%
      group_by(year, month, day) %>%
      summarize(
        # 平均延误时间
        avg_delay1 = mean(arr_delay),
        # 平均正延误时间
        avg_delay2 = mean(arr_delay[arr_delay > 0])
      )
    
    • 常用的摘要函数:
      位置度量:mean(x) median(x)
      分散程度度量:sd(x)标准差; IQR(x)四分位距; mad(x)绝对中位差
      秩的度量:min(x) quantile(x, 0.25)x位于25%-75%之间的值; max(x)
      位度量:first(x) nth(x) last(x)
      计数:n()不需要任何参数,sum(! is.na(x))可计算非缺失量的数值,n_distinct(x)可计算唯一值
      count(x)用于只需要对x变量进行计数,不与 summarize() 联用
      逻辑值计数和比例:sum(x > 10) mean(y == 0) TRUE返回1, FALSE返回0

    e.g.

    > # 找出准点记录(平均延误时间)最差的航班(尾号)
    > flights %>% group_by(tailnum) %>%
    +   summarise(avrg_delay = mean(dep_delay, na.rm = TRUE)) %>%
    +   arrange(desc(avrg_delay))
    # A tibble: 4,044 x 2
       tailnum avrg_delay
       <chr>        <dbl>
     1 N844MH         297
     2 N922EV         274
     3 N587NW         272
     4 N911DA         268
     5 N851NW         233
     6 N654UA         227
     7 N928DN         203
     8 N7715E         186
     9 N665MQ         177
    10 N136DL         165
    # … with 4,034 more rows
    
    
    > # 航班起飞时间与延误时间的关系
    > flights %>% group_by(hour) %>%
    +   summarize(avrg_delay = mean(dep_delay, na.rm = TRUE)) %>%
    +   ggplot(aes(x = hour, y = avrg_delay)) +
    +   geom_point() +
    +   geom_smooth(method=lm, formula = y~poly(x,2),se=F) +
    +   labs(x = 'dep_time', y = 'avrg_delay')
    Warning messages:
    1: Removed 1 rows containing non-finite values (stat_smooth). 
    2: Removed 1 rows containing missing values (geom_point). 
    
    起飞时间与延误时间关系

    相关文章

      网友评论

          本文标题:R-dplyr 数据转换

          本文链接:https://www.haomeiwen.com/subject/lptqshtx.html