题目:
给你两个下标从 0 开始的整数数组 nums1 和 nums2 ,两者长度都是 n ,再给你一个正整数 k 。你必须从 nums1 中选一个长度为 k 的 子序列 对应的下标。
对于选择的下标 i0 ,i1 ,..., ik - 1 ,你的 分数 定义如下:
nums1 中下标对应元素求和,乘以 nums2 中下标对应元素的 最小值 。
用公示表示: (nums1[i0] + nums1[i1] +...+ nums1[ik - 1]) * min(nums2[i0] , nums2[i1], ... ,nums2[ik - 1]) 。
请你返回 最大 可能的分数。
一个数组的 子序列 下标是集合 {0, 1, ..., n-1} 中删除若干元素得到的剩余集合,也可以不删除任何元素。
示例 1:
输入:nums1 = [1,3,3,2], nums2 = [2,1,3,4], k = 3
输出:12
解释:
四个可能的子序列分数为:
- 选择下标 0 ,1 和 2 ,得到分数 (1+3+3) * min(2,1,3) = 7 。
- 选择下标 0 ,1 和 3 ,得到分数 (1+3+2) * min(2,1,4) = 6 。
- 选择下标 0 ,2 和 3 ,得到分数 (1+3+2) * min(2,3,4) = 12 。
- 选择下标 1 ,2 和 3 ,得到分数 (3+3+2) * min(1,3,4) = 8 。
所以最大分数为 12 。
示例 2:
输入:nums1 = [4,2,3,1,1], nums2 = [7,5,10,9,6], k = 1
输出:30
解释:
选择下标 2 最优:nums1[2] * nums2[2] = 3 * 10 = 30 是最大可能分数。
提示:
n == nums1.length == nums2.length
1 <= n <= 105
0 <= nums1[i], nums2[j] <= 105
1 <= k <= n
java代码:
class Solution {
public long maxScore(int[] nums1, int[] nums2, int k) {
int n = nums1.length;
Integer [] idxs = new Integer[n];
for (int i = 0; i < n; i ++){
idxs[i] = i;
}
Arrays.sort(idxs, (i, j) -> nums2[j] - nums2[i]);
long res = 0L;
PriorityQueue<Integer> minHeap = new PriorityQueue<>();
long sum1 = 0L;
for (int idx: idxs){
int x = nums1[idx];
int y = nums2[idx];
while (minHeap.size() > k - 1){
sum1 -= minHeap.poll();
}
minHeap.offer(x);
sum1 += x;
if (minHeap.size() == k){
long cur = sum1 * y;
res = Math.max(res, cur);
}
}
return res;
}
}
网友评论