美文网首页
Android-LeakCanary原理解析

Android-LeakCanary原理解析

作者: zzq_nene | 来源:发表于2021-01-19 10:45 被阅读0次

    一、前言(了解ReferenceQueue)

    在分析LeakCanary原理之前,首先需要了解ReferenceQueue在LeakCanary的作用。
    WeakReference在创建时,如果指定一个ReferenceQueue对象,在垃圾回收检测到被引用的对象的可达性更改后,垃圾回收器会将已注册的引用对象添加到ReferenceQueue对象中,等待ReferenceQueue处理。但是如果当GC过后引用对象仍然不被加入ReferenceQueue中,就可能存在内存泄露问题。这里ReferenceQueue对象中,存的其实就是WeakReference对象,而不是WeakReference中引用的要被回收的对象。即GC过后,WeakReference引用的对象被回收了,那么WeakReference引用的对象就是null,那么该WeakReference对象就会被加入到ReferenceQueue队列中。
    所以我们可以通过监听 Activity.onDestroy() 回调之后,通过弱引用(WeakReference)对象、ReferenceQueue和 GC来观测Activity引用的内存泄露情况,如果发现了未被回收的Activity对象,在找到该Activity对象是否被其他对象所引用,如果被其他对象引用,就进行 heap dump生成完整的内存引用链(最短引用链),并通过notification等方式展示出来。

    二、LeakCanary的启动

    LeakCanary2.+的启动,与LeakCanary1.+的不同,1.+版本的启动,需要在Application的onCreate中手动调用LeakCanary.install方法进行启动;而2.+版本的启动则不需要,而是依赖ContentProvider,因为ContentProvider会在Application之前被加载,所以ContentProvider的onCreate方法会在Application的onCreate方法之前被调用,所以在ContentProvider的onCreate方法中完成初始化工作。
    在源码中leakcanary-leaksentry中有一个LeakSentryInstaller,LeakSentryInstaller其实就是ContentProvider的一个子类,在其onCreate方法中就会调用InternalLeakSentry.install(application)进行初始化工作。

    internal class LeakSentryInstaller : ContentProvider() {
    
      override fun onCreate(): Boolean {
        CanaryLog.logger = DefaultCanaryLog()
        val application = context!!.applicationContext as Application
        InternalLeakSentry.install(application) // 进行初始化工作,核心
        return true
      }
      ...
    }
    

    然后在AndroidManifest.xml中注册该ContentProvider。在这里注册,那么打包项目时,会将每个库和library中的AndroidManifest.xml合并到最终的app的androidManifest中。

    <application>
      <provider
          android:name="leakcanary.internal.LeakSentryInstaller"
          android:authorities="${applicationId}.leak-sentry-installer"
          android:exported="false"/>
    </application>
    

    三、LeakCanary的初始化

    LeakCanary的初始化是在InternalLeakSentry的install方法,即在ContentProvider的onCreate中调用。

    1.InternalLeakSentry#install

      private val mainHandler = Handler(Looper.getMainLooper())
    
      init {//构造函数
        listener = try {//InternalLeakCanary是继承自LeakSentryListener,然后这里它是一个kotlin单例模式
          val leakCanaryListener = Class.forName("leakcanary.internal.InternalLeakCanary")
          leakCanaryListener.getDeclaredField("INSTANCE").get(null) as LeakSentryListener
        } catch (ignored: Throwable) {
          LeakSentryListener.None
        }
      }
    
      private val checkRetainedExecutor = Executor { // 默认五秒后执行
        mainHandler.postDelayed(it, LeakSentry.config.watchDurationMillis)
      }
      val refWatcher = RefWatcher(
          clock = clock,
          checkRetainedExecutor = checkRetainedExecutor,
          onReferenceRetained = { listener.onReferenceRetained() },
          isEnabled = { LeakSentry.config.enabled }
      )
    
    fun install(application: Application) {
      CanaryLog.d("Installing LeakSentry")
      checkMainThread() // 只能在主线程调用,否则会抛出异常
      if (this::application.isInitialized) {
        return
      }
      InternalLeakSentry.application = application
    
      val configProvider = { LeakSentry.config }
      // 这里监听页面的销毁
      // 在这里会调用RefWatcher.watch()方法监测Activity的引用
      // 其中RefWatcher在InternalLeakSentry类中创建。
      ActivityDestroyWatcher.install( // 监听 Activity.onDestroy()
          application, refWatcher, configProvider
      )
      // 在这里会创建多个FragmentDestroyWatcher
      // 其内部采用单例的方式,用List列表存储FragmentDestroyWatcher
      // 而具体的FragmentDestroyWatcher其实就是SupportFragmentDestroyWatcher
      // SupportFragmentDestroyWatcher是其接口实现类
      // 这是androidx使用,但是需要fragment可以使用
      // FragmentDestroyWatcher中会监听生命周期的onActivityCreated方法
      // 遍历所有的FragmentDestroyWatcher,调用其watchFragments方法
      // watchFragments方法在SupportFragmentDestroyWatcher的实现,其实就是
      // 注册该fragment的生命周期的监听
      FragmentDestroyWatcher.install( // 监听 Fragment.onDestroy()
          application, refWatcher, configProvider
      )
      // 初始化检测内存泄露过程中需要用到的对象
      listener.onLeakSentryInstalled(application) // Sentry 哨兵
    }
    

    这里的listener是LeakSentryListener接口,而实现LeakSentryListener接口的类,其实就是InternalLeakCanary,InternalLeakCanary是在leakcanary-android-core下的,InternalLeakCanary是单例模式的,采用的是kotlin单例,即用object关键字修饰类。

    2.InternalLeakCanary#onLeakSentryInstalled

    override fun onLeakSentryInstalled(application: Application) {
      this.application = application
    
      // 用于 heap dump:堆转储
      val heapDumper = AndroidHeapDumper(application, leakDirectoryProvider) 
    
      val gcTrigger = GcTrigger.Default // 用于手动调用 GC
    
      val configProvider = { LeakCanary.config } // 配置项
    
      val handlerThread = HandlerThread(LEAK_CANARY_THREAD_NAME)
      handlerThread.start()
      val backgroundHandler = Handler(handlerThread.looper) // 发起内存泄漏检测的线程
    
      // 堆转存储触发器
      heapDumpTrigger = HeapDumpTrigger(
          application, backgroundHandler, LeakSentry.refWatcher, gcTrigger, heapDumper, configProvider
      )
      application.registerVisibilityListener { applicationVisible ->
        // 这里的applicationVisible其实就是调用扩展函数registerVisibilityListener
        // 的时候,创建的VisibilityTracker对象传入的listener变量
        // 在接收生命周期回调的时候,在onActivityStarted传入true,
        // 在onActivityStopped传入false
        // 这里这里的applicationVisible在onStarted的时候是true
        // 在onStopped的时候是false
        this.applicationVisible = applicationVisible
        // 在applicationVisible是false的时候,其内部才会去检查
        heapDumpTrigger.onApplicationVisibilityChanged(applicationVisible)
      }
      // 这是添加动态快捷方式,即在手机桌面添加一个LeakCanary的快捷方式,在debug模式下
      addDynamicShortcut(application)
    }
    
    // 该方法主要是用于在手机桌面动态生成LeakCanary快捷方式
    private fun addDynamicShortcut(application: Application) {
      // 如果系统版本小于25,则不添加动态快捷方式
      if (VERSION.SDK_INT < VERSION_CODES.N_MR1) {
        return
      }
      // 判断是否允许添加动态快捷方式
      if (!application.resources.getBoolean(R.bool.leak_canary_add_dynamic_shortcut)) {
        return
      }
    
      val shortcutManager = application.getSystemService(ShortcutManager::class.java)!!
      val dynamicShortcuts = shortcutManager.dynamicShortcuts
    
      val shortcutInstalled =
        dynamicShortcuts.any { shortcut -> shortcut.id == DYNAMIC_SHORTCUT_ID }
    
      if (shortcutInstalled) {
        return
      }
    
      val mainIntent = Intent(Intent.ACTION_MAIN, null)
      mainIntent.addCategory(Intent.CATEGORY_LAUNCHER)
      mainIntent.setPackage(application.packageName)
      val activities = application.packageManager.queryIntentActivities(mainIntent, 0)
          .filter {
            it.activityInfo.name != "leakcanary.internal.activity.LeakLauncherActivity"
          }
    
      if (activities.isEmpty()) {
        return
      }
    
      val firstMainActivity = activities.first()
          .activityInfo
    
      // Displayed on long tap on app icon
      val longLabel: String
      // Label when dropping shortcut to launcher
      val shortLabel: String
    
      val leakActivityLabel = application.getString(R.string.leak_canary_shortcut_label)
    
      if (activities.isEmpty()) {
        longLabel = leakActivityLabel
        shortLabel = leakActivityLabel
      } else {
    
        val firstLauncherActivityLabel = if (firstMainActivity.labelRes != 0) {
          application.getString(firstMainActivity.labelRes)
        } else {
          val applicationInfo = application.applicationInfo
          if (applicationInfo.labelRes != 0) {
            application.getString(applicationInfo.labelRes)
          } else {
            applicationInfo.nonLocalizedLabel.toString()
          }
        }
        val fullLengthLabel = "$firstLauncherActivityLabel $leakActivityLabel"
        // short label should be under 10 and long label under 25
        if (fullLengthLabel.length > 10) {
          if (fullLengthLabel.length <= 25) {
            longLabel = fullLengthLabel
            shortLabel = leakActivityLabel
          } else {
            longLabel = leakActivityLabel
            shortLabel = leakActivityLabel
          }
        } else {
          longLabel = fullLengthLabel
          shortLabel = fullLengthLabel
        }
      }
    
      val componentName = ComponentName(firstMainActivity.packageName, firstMainActivity.name)
    
      val shortcutCount = dynamicShortcuts.count { shortcutInfo ->
        shortcutInfo.activity == componentName
      } + shortcutManager.manifestShortcuts.count { shortcutInfo ->
        shortcutInfo.activity == componentName
      }
    
      if (shortcutCount >= shortcutManager.maxShortcutCountPerActivity) {
        return
      }
    
      val intent = leakDisplayActivityIntent
      intent.action = "Dummy Action because Android is stupid"
      val shortcut = Builder(application, DYNAMIC_SHORTCUT_ID)
          .setLongLabel(longLabel)
          .setShortLabel(shortLabel)
          .setActivity(componentName)
          .setIcon(Icon.createWithResource(application, R.mipmap.leak_canary_icon))
          .setIntent(intent)
          .build()
    
      try {
        shortcutManager.addDynamicShortcuts(listOf(shortcut))
      } catch (ignored: Throwable) {
        CanaryLog.d(
            ignored,
            "Could not add dynamic shortcut. " +
                "shortcutCount=$shortcutCount, " +
                "maxShortcutCountPerActivity=${shortcutManager.maxShortcutCountPerActivity}"
        )
      }
    }
    

    四、FragmentDestroyWatcher.install

    这里使用的RefWatcher对象,是在InternalLeakSentry中进行初始化的,然后在调用ActivityDestroyWatcher和FragmentDestroyWatcher的install方法的时候,传入。

    internal interface FragmentDestroyWatcher {
        // 实现类是SupportFragmentDestroyWatcher
    
      fun watchFragments(activity: Activity)
    
      companion object {
    
        private const val SUPPORT_FRAGMENT_CLASS_NAME = "androidx.fragment.app.Fragment"
    
        fun install(
          application: Application,
          refWatcher: RefWatcher,
          configProvider: () -> LeakSentry.Config
        ) {
          val fragmentDestroyWatchers = mutableListOf<FragmentDestroyWatcher>()
    
          if (SDK_INT >= O) { // >= 26,使用 AndroidOFragmentDestroyWatcher
            fragmentDestroyWatchers.add(
                AndroidOFragmentDestroyWatcher(refWatcher, configProvider)
            )
          }
    
          if (classAvailable(
                  SUPPORT_FRAGMENT_CLASS_NAME
              )
          ) {
            fragmentDestroyWatchers.add( 
                // androidx 使用 SupportFragmentDestroyWatcher
                SupportFragmentDestroyWatcher(refWatcher, configProvider)
            )
          }
    
          if (fragmentDestroyWatchers.size == 0) {
            return
          }
    
          application.registerActivityLifecycleCallbacks(object : ActivityLifecycleCallbacksAdapter() {
            override fun onActivityCreated(
              activity: Activity,
              savedInstanceState: Bundle?
            ) {
              // 遍历所有的fragmentDestroyWatchers
              // 调用其watchFragments,其实就是调用SupportFragmentDestroyWatcher
              // 中的方法实现
              // 遍历fragmentDestroyWatchers调用watchFragments的时候
              // 其实就是对fragment添加生命周期监听,用于在生命周期回调的时候调用RefWatcher.watch方法
              for (watcher in fragmentDestroyWatchers) {
                watcher.watchFragments(activity)
              }
            }
          })
        }
    
        private fun classAvailable(className: String): Boolean {
          return try {
            Class.forName(className)
            true
          } catch (e: ClassNotFoundException) {
            false
          }
        }
      }
    }
    
    internal class SupportFragmentDestroyWatcher(
      private val refWatcher: RefWatcher,
      private val configProvider: () -> Config
    ) : FragmentDestroyWatcher {
    
      // 这是注册给fragment的生命周期监听的
      // 从这里可以看出,fragment销毁的时候,其实也会调用RefWatcher.watch
      private val fragmentLifecycleCallbacks = object : FragmentManager.FragmentLifecycleCallbacks() {
    
        override fun onFragmentViewDestroyed(
          fm: FragmentManager,
          fragment: Fragment
        ) {
          val view = fragment.view
          if (view != null && configProvider().watchFragmentViews) {
            refWatcher.watch(view)
          }
        }
    
        override fun onFragmentDestroyed(
          fm: FragmentManager,
          fragment: Fragment
        ) {
          if (configProvider().watchFragments) {
            refWatcher.watch(fragment)
          }
        }
      }
    
      override fun watchFragments(activity: Activity) {
        // 这里就是根据传入的FragmentActivity,然后获取supportFragmentManager
        // 对Fragment进行生命周期的监听注册
        if (activity is FragmentActivity) {
          val supportFragmentManager = activity.supportFragmentManager
          supportFragmentManager.registerFragmentLifecycleCallbacks(fragmentLifecycleCallbacks, true)
        }
      }
    }
    

    五、RefWatcher

    在监测Activity和Fragment的生命周期进行内存回收以及是否泄露的过程,就是调用RefWatcher.watch方法进行,该方法是使用Synchronized修饰的同步方法。RefWatcher.watch的方法,一般是在Activity和Fragment生命周期执行到onDestroy的时候调用。根据生命周期监听触发回调,然后调用RefWatcher.watch方法。

    class RefWatcher constructor(
      private val clock: Clock,
      private val checkRetainedExecutor: Executor,
      private val onReferenceRetained: () -> Unit,
      /**
       * Calls to [watch] will be ignored when [isEnabled] returns false
       */
      private val isEnabled: () -> Boolean = { true }
    ) {
    
      /**
       * References passed to [watch] that haven't made it to [retainedReferences] yet.
       * watch() 方法传进来的引用,尚未判定为泄露
       */
      private val watchedReferences = mutableMapOf<String, KeyedWeakReference>()
      /**
       * References passed to [watch] that we have determined to be retained longer than they should
       * have been.
       * watch() 方法传进来的引用,已经被判定为泄露
       */
      private val retainedReferences = mutableMapOf<String, KeyedWeakReference>()
      // 引用队列,配合弱引用使用,当弱引用中的对象被回收时,接收弱引用对象
      private val queue = ReferenceQueue<Any>() 
    
      val hasRetainedReferences: Boolean
        @Synchronized get() {
          removeWeaklyReachableReferences()
          return retainedReferences.isNotEmpty()
        }
    
      val hasWatchedReferences: Boolean
        @Synchronized get() {
          removeWeaklyReachableReferences()
          return retainedReferences.isNotEmpty() || watchedReferences.isNotEmpty()
        }
    
      val retainedKeys: Set<String>
        @Synchronized get() {
          removeWeaklyReachableReferences()
          return HashSet(retainedReferences.keys)
        }
    
      /**
       * Identical to [.watch] with an empty string reference name.
       */
      @Synchronized fun watch(watchedReference: Any) {
        watch(watchedReference, "")
      }
    
      /**
       * Watches the provided references.
       *
       * @param referenceName An logical identifier for the watched object.
       */
      @Synchronized fun watch(
        watchedReference: Any,
        referenceName: String
      ) {
        if (!isEnabled()) {
          return
        }
        // 移除队列中将要被 GC 的引用
        removeWeaklyReachableReferences() 
        val key = UUID.randomUUID()
            .toString()
        val watchUptimeMillis = clock.uptimeMillis()
        // 构建当前引用的弱引用对象,并关联引用队列 queue
        // queue是一个ReferenceQueue对象,该对象是用来保存已经回收了的对象的弱引用
        // 即构建给对象构建弱引用对象,当对象被回收的时候,引用该对象的弱引用就会被加入到ReferenceQueue队列的末尾
        val reference = 
          KeyedWeakReference(watchedReference, key, referenceName, watchUptimeMillis, queue)
        if (referenceName != "") {
          CanaryLog.d(
              "Watching instance of %s named %s with key %s", reference.className,
              referenceName, key
          )
        } else {
          CanaryLog.d(
              "Watching instance of %s with key %s", reference.className, key
          )
        }
        // 如果该对象尚未被判定为泄露,则将该弱引用加入到watchedReferences
        // 将引用存入 watchedReferences
        watchedReferences[key] = reference 
        // 这里采用线程池执行
        // 该线程池的赋值是在InternalLeakSentry初始化RefWatcher对象的时候赋值的
        // 该线程池的内部执行是采用mainHandler的方式,切换到主线程进行执行
        /*
        private val checkRetainedExecutor = Executor { // 默认五秒后执行
          mainHandler.postDelayed(it, LeakSentry.config.watchDurationMillis)
        }
        LeakSentry.config.watchDurationMillis的定义是在LeakSentry
        val watchDurationMillis: Long = TimeUnit.SECONDS.toMillis(5)
        */
        checkRetainedExecutor.execute {
          moveToRetained(key) // 如果当前引用未被移除,仍在 watchedReferences  队列中,
                              // 说明仍未被 GC,移入 retainedReferences 队列中,暂时标记为泄露
        }
      }
    
      @Synchronized private fun moveToRetained(key: String) {
        removeWeaklyReachableReferences() // 再次调用,防止遗漏
        val retainedRef = watchedReferences.remove(key)
        if (retainedRef != null) {//说明可能存在内存泄漏
          retainedReferences[key] = retainedRef
          onReferenceRetained()
        }
      }
    
      @Synchronized fun removeRetainedKeys(keysToRemove: Set<String>) {
        retainedReferences.keys.removeAll(keysToRemove)
      }
    
      @Synchronized fun clearWatchedReferences() {
        watchedReferences.clear()
        retainedReferences.clear()
      }
    
      private fun removeWeaklyReachableReferences() {
        // WeakReferences are enqueued as soon as the object to which they point to becomes weakly
        // reachable. This is before finalization or garbage collection has actually happened.
        // 弱引用一旦变得弱可达,就会立即入队。这将在 finalization 或者 GC 之前发生。
        var ref: KeyedWeakReference?
        do {
          ref = queue.poll() as KeyedWeakReference? // 队列 queue 中的对象都是会被 GC 的
          if (ref != null) {//说明被释放了
            val removedRef = watchedReferences.remove(ref.key)//获取被释放的引用的key
            if (removedRef == null) {
              retainedReferences.remove(ref.key)
            }
            // 移除 watchedReferences 队列中的会被 GC 的 ref 对象,剩下的就是可能泄露的对象
          }
        } while (ref != null)
      }
    }
    
      private fun removeWeaklyReachableReferences() {
        // WeakReferences are enqueued as soon as the object to which they point to becomes weakly
        // reachable. This is before finalization or garbage collection has actually happened.
        // 弱引用一旦变得弱可达,就会立即入队。这将在 finalization 或者 GC 之前发生。
        var ref: KeyedWeakReference?
        do {
          ref = queue.poll() as KeyedWeakReference? // 队列 queue 中的对象都是会被 GC 的
          if (ref != null) {
            //说明queue中有弱引用对象,说明该弱引用对象引用的对象被释放了
            // 获取被释放的引用的key
            // 从两个map集合中进行释放
            val removedRef = watchedReferences.remove(ref.key)
            // 这里判断为空的原因是,如果在watchedReferences中没有该对象
            // 那么说明该对象已经被判定为泄露,但是这个时候该对象又被回收了,
            // 所以得从这个判定泄露的集合中移除该判定
            if (removedRef == null) {
              retainedReferences.remove(ref.key)
            }
            // 移除 watchedReferences 队列中的会被 GC 的 ref 对象,剩下的就是可能泄露的对象
          }
        } while (ref != null)
      }
    
      @Synchronized private fun moveToRetained(key: String) {
        // 再次调用,防止遗漏
        removeWeaklyReachableReferences() 
        // 如果移除ReferenceQueue队列中的弱引用之后,
        // 在watchedReferences队列中依然还有该对象,说明该弱引用引用的对象在此时依然不是弱可达
        // 此时就不会移除watchedReferences中的弱引用
        // 那么说明此时就存在内存泄露的可能,则需要将watchedReferences中key对应的弱引用
        // 加入到retainedReferences中,判断该弱引用引用的对象是可能泄露的对象
        val retainedRef = watchedReferences.remove(key)
        if (retainedRef != null) {//说明可能存在内存泄漏
          retainedReferences[key] = retainedRef
          onReferenceRetained()
        }
      }
    

    六、VisibilityTracker

    VisibilityTracker其实就是在InternalLeakCanary.onLeakSentryInstalled方法中通过调用application.registerVisibilityListener方法的时候,添加的Application.ActivityLifecycleCallbacks,这里采用适配器模式,使用适配器模式的目的,其实就是不需要重写所有方法,只在VisibilityTracker中重写需要使用的方法。
    VisibilityTracker的目的其实就是监听Activity的生命周期变化,即是否是执行到了onStart和onStop,如果是onStop的时候,则做内存泄露监测工作。
    VisibilityTracker与ActivityDestroyWatcher有点区别,ActivityDestroyWatcher是最终Activity执行onDestroy的时候进行内存泄露分析

    internal class VisibilityTracker(
      private val listener: (Boolean) -> Unit
    ) :
        ActivityLifecycleCallbacksAdapter() {
    
      private var startedActivityCount = 0
    
      /**
       * Visible activities are any activity started but not stopped yet. An activity can be paused
       * yet visible: this will happen when another activity shows on top with a transparent background
       * and the activity behind won't get touch inputs but still need to render / animate.
       */
      private var hasVisibleActivities: Boolean = false
    
      override fun onActivityStarted(activity: Activity) {
        startedActivityCount++
        if (!hasVisibleActivities && startedActivityCount == 1) {
          hasVisibleActivities = true
          listener.invoke(true)
        }
      }
    
      override fun onActivityStopped(activity: Activity) {
        // This could happen if the callbacks were registered after some activities were already
        // started. In that case we effectively considers those past activities as not visible.
        if (startedActivityCount > 0) {
          startedActivityCount--
        }
        if (hasVisibleActivities && startedActivityCount == 0 && !activity.isChangingConfigurations) {
          hasVisibleActivities = false
          // 这里就是给InternalLeakCanary.onLeakSentryInstalled中注册的application.registerVisibilityListener
          // 传入的listener的回调传入参数为false,表示需要进行内存泄露检测
          listener.invoke(false)
        }
      }
    }
    
    internal fun Application.registerVisibilityListener(listener: (Boolean) -> Unit) {
      // 当生命周期回调的时候,就会调用VisibilityTracker中重写的方法
      // 而在VisibilityTracker中重写了started和stopped两个方法
      // 在started中调用listener的时候传入的参数是true
      // 在stopped中调用listener的时候传入的参数是false
      // 然后在listener这个接口实现的回调中就会接收该listener的参数
      // 在根据该参数判断是否需要进行内存泄露监测,这里就是回调到了
      // InternalLeakCanary.onLeakSentryInstalled中注册的application.registerVisibilityListener
      // 进而调用到了HeapDumpTrigger.onApplicationVisibilityChanged
      registerActivityLifecycleCallbacks(VisibilityTracker(listener))
    }
    

    七、HeapDumpTrigger#onApplicationVisibilityChanged

    本方法是在InternalLeakCanary.onLeakSentryInstalled给application添加生命周期回调的时候,根据onStart和onStop生命周期的变化来进行Heap Dump(heap dump文件(.hprof))
    当生命周期执行到onStop的时候,会向该Application的扩展函数registerVisibilityListener的参数listener这个高阶函数传入boolean参数为false
    看InternalLeakCanary#onLeakSentryInstalled方法中对application添加的生命周期监听,这是调用了application的扩展函数,该扩展函数是在VisibilityTracker中定义的。

        application.registerVisibilityListener { applicationVisible ->
          this.applicationVisible = applicationVisible
          heapDumpTrigger.onApplicationVisibilityChanged(applicationVisible)
        }
    

    其实registerVisibilityListener方法内部调用的就是application的registerActivityLifecycleCallbacks方法,传入的是Application.ActivityLifecycleCallbacks对象,这里传入的是VisibilityTracker,其实VisibilityTracker就是Application.ActivityLifecycleCallbacks的子类实现。

    internal fun Application.registerVisibilityListener(listener: (Boolean) -> Unit) {
      registerActivityLifecycleCallbacks(VisibilityTracker(listener))
    }
    

    HeapDumpTrigger.onApplicationVisibilityChanged方法的调用,就是根据上述传给VisibilityTracker的listener函数来回调调用的,listener接收的是false的时候,就会调用scheduleRetainedInstanceCheck,接收的是false的时候是生命周期执行到onStop的时候。

      fun onApplicationVisibilityChanged(applicationVisible: Boolean) {
        if (applicationVisible) {
          applicationInvisibleAt = -1L
        } else {
          applicationInvisibleAt = SystemClock.uptimeMillis()
          scheduleRetainedInstanceCheck("app became invisible", LeakSentry.config.watchDurationMillis)
        }
      }
    

    这里的delayMillis默认是5s,因为该参数接收的是LeakSentry.config.watchDurationMillis,这个值初始默认值是5s。

      private fun scheduleRetainedInstanceCheck(
        reason: String,
        delayMillis: Long // 默认 5 s
      ) {
        if (checkScheduled) {
          return
        }
        checkScheduled = true
        // 通过handler切换到主线程调用,确保是在主线程执行,并且延迟5S执行。
        backgroundHandler.postDelayed({
          checkScheduled = false
          checkRetainedInstances(reason)
        }, delayMillis)
      }
    
      private fun checkRetainedInstances(reason: String) {
        CanaryLog.d("Checking retained instances because %s", reason)
        val config = configProvider()
        // A tick will be rescheduled when this is turned back on.
        if (!config.dumpHeap) {
          return
        }
        // RefWatcher.retainedKeys是一个Set集合,该Set集合是从
        // RefWatcher.retainedReferences中获取的数据
        // RefWatcher.retainedReferences存储的就是已经被判定为泄露的
        var retainedKeys = refWatcher.retainedKeys
    
        // 当前泄露实例个数小于 5 个,不进行 heap dump
        if (checkRetainedCount(retainedKeys, config.retainedVisibleThreshold)) return
    
        if (!config.dumpHeapWhenDebugging && DebuggerControl.isDebuggerAttached) {
          showRetainedCountWithDebuggerAttached(retainedKeys.size)
          scheduleRetainedInstanceCheck("debugger was attached", WAIT_FOR_DEBUG_MILLIS)
          CanaryLog.d(
              "Not checking for leaks while the debugger is attached, will retry in %d ms",
              WAIT_FOR_DEBUG_MILLIS
          )
          return
        }
    
        // 可能存在被观察的引用将要变得弱可达,但是还未入队引用队列。
        // 这时候应该主动调用一次 GC,可能可以避免一次 heap dump
        // 即被判定为内存泄露的队列中可能有些引用将要变成弱可达
        // 这个时候就是将被判定为泄露的一些对象,进行再一次回收。
        gcTrigger.runGc()
    
        retainedKeys = refWatcher.retainedKeys
    
        if (checkRetainedCount(retainedKeys, config.retainedVisibleThreshold)) return
        // 为heap dump设置被判定为内存泄露的对应的key集合
        HeapDumpMemoryStore.setRetainedKeysForHeapDump(retainedKeys)
    
        CanaryLog.d("Found %d retained references, dumping the heap", retainedKeys.size)
        HeapDumpMemoryStore.heapDumpUptimeMillis = SystemClock.uptimeMillis()
        dismissNotification()
        // 输出一个heap dump 文件
        val heapDumpFile = heapDumper.dumpHeap() // AndroidHeapDumper
        if (heapDumpFile == null) {
          CanaryLog.d("Failed to dump heap, will retry in %d ms", WAIT_AFTER_DUMP_FAILED_MILLIS)
          scheduleRetainedInstanceCheck("failed to dump heap", WAIT_AFTER_DUMP_FAILED_MILLIS)
          showRetainedCountWithHeapDumpFailed(retainedKeys.size)
          return
        }
    
        refWatcher.removeRetainedKeys(retainedKeys) // 移除已经 heap dump 的 retainedKeys
    
        HeapAnalyzerService.runAnalysis(application, heapDumpFile) // 分析 heap dump 文件
      }
    

    相关文章

      网友评论

          本文标题:Android-LeakCanary原理解析

          本文链接:https://www.haomeiwen.com/subject/lthamktx.html