美文网首页
AQS与ReentrantLock源码

AQS与ReentrantLock源码

作者: hcq0514 | 来源:发表于2021-01-06 10:43 被阅读0次

    AQS

    AbstractQuenedSynchronizer抽象的队列式同步器。是除了java自带的synchronized关键字之外的锁机制。

    • AQS主要结构



      AQS就是基于CLH队列,用volatile修饰共享变量state,线程通过CAS去改变状态符,成功则获取锁成功,失败则进入等待队列(CLH队列),等待被唤醒。

    ReentrantLock源码

    • ReentrantLock也是基于AQS实现的框架他的结构为



      主要里面包含着一个sync来控制

    • lock方法(没特殊标志的都用公平锁来讲解,ReentrantLock初始化的时候其实是非公平锁)
        public void lock() {
            sync.lock();
        }
    
            final void lock() {
                acquire(1);
            }
    
    java.util.concurrent.locks.AbstractQueuedSynchronizer#acquire
        public final void acquire(int arg) {
    //tryAcquire(arg)尝试获取锁,如果能获取成功的话则!tryAcquire(arg)为false,&&后面的逻辑也不会执行
    //如果获取失败的话会执行 acquireQueued(addWaiter(Node.EXCLUSIVE), arg))添加入进入队列
            if (!tryAcquire(arg) &&
                acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
                selfInterrupt();
        }
    

    tryAcquire方法(可重入锁实现地方)

            protected final boolean tryAcquire(int acquires) {
                final Thread current = Thread.currentThread();
    //获取当前上锁的次数
                int c = getState();
                if (c == 0) {
    //判断他前面是否还有人排队,如果没有人的话尝试获取锁
                    if (!hasQueuedPredecessors() &&
                        compareAndSetState(0, acquires)) {
                        setExclusiveOwnerThread(current);
                        return true;
                    }
                }
    //可重入锁实现地方,判断当前获取锁的线程是不是持有线程,如果是的话则加一层锁
                else if (current == getExclusiveOwnerThread()) {
                    int nextc = c + acquires;
                    if (nextc < 0)
                        throw new Error("Maximum lock count exceeded");
                    setState(nextc);
                    return true;
                }
                return false;
            }
    

    进队列方法acquireQueued(addWaiter(Node.EXCLUSIVE), arg))方法

        private Node addWaiter(Node mode) {
    //新建一个node
            Node node = new Node(Thread.currentThread(), mode);
    //尾巴节点
            Node pred = tail;
            if (pred != null) {
                node.prev = pred;
                if (compareAndSetTail(pred, node)) {
                    pred.next = node;
                    return node;
                }
            }
    //如果tail节点为空,说明是第一次入队,还没有初始化,则初始化队列
            enq(node);
            return node;
        }
    
        private Node enq(final Node node) {
            for (;;) {
    //t置为当前tail的指针
                Node t = tail;
                if (t == null) { 
    //第一次进来初始化头尾节点(初始化头结点之后再复制尾巴节点)
                    if (compareAndSetHead(new Node()))
                        tail = head;
                } else {
    //第一次循环完后,将
                    node.prev = t;
    //将tail置为node节点的指针(虽然上面把tail的指针复制给了t,但是这边直接改变了tail的指针,跟t没干系,t还是指向原来的tail指针)
                    if (compareAndSetTail(t, node)) {
                        t.next = node;
                        return t;
                    }
                }
            }
        }
    
    
        final boolean acquireQueued(final Node node, int arg) {
            boolean failed = true;
            try {
                boolean interrupted = false;
                for (;;) {
    //获取前置节点
                    final Node p = node.predecessor();
    //如果他的前置节点是head节点,则再尝试获取锁
                    if (p == head && tryAcquire(arg)) {
                        setHead(node);
                        p.next = null; // help GC
                        failed = false;
                        return interrupted;
                    }
    //如果获取不到锁
                    if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                        interrupted = true;
                }
            } finally {
                if (failed)
                    cancelAcquire(node);
            }
        }
    
        private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
            int ws = pred.waitStatus;
            if (ws == Node.SIGNAL)
                /*
                 * This node has already set status asking a release to signal it, so it can safely park.
                 * 节点已经设置好为 Node.SIGNAL状态,可以放心停止线程
                 */
                return true;
            if (ws > 0) {
                /*
                 * Predecessor was cancelled. Skip over predecessors and indicate retry.
                 * 前置节点已经cancel了,直接剔除
                 */
                do {
                    node.prev = pred = pred.prev;
                } while (pred.waitStatus > 0);
                pred.next = node;
            } else {
                /*
                 * 将他的waitStatus置为SIGNAL
                 */
                compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
            }
            return false;
        }
    
        private final boolean parkAndCheckInterrupt() {
            LockSupport.park(this);
            return Thread.interrupted();
        }
        public static void park(Object blocker) {
            Thread t = Thread.currentThread();
            setBlocker(t, blocker);
    //停止线程
            UNSAFE.park(false, 0L);
            setBlocker(t, null);
        }
    
    • unlock解锁方法
    调用 sync.release(1);
        public void unlock() {
            sync.release(1);
        }
    
        public final boolean release(int arg) {
    //释放锁
            if (tryRelease(arg)) {
                Node h = head;
                if (h != null && h.waitStatus != 0)
    //唤醒等待线程
                    unparkSuccessor(h);
                return true;
            }
            return false;
        }
    
            protected final boolean tryRelease(int releases) {
                int c = getState() - releases;
                if (Thread.currentThread() != getExclusiveOwnerThread())
                    throw new IllegalMonitorStateException();
                boolean free = false;
    //当前的锁持有数为0时(重入的话C可能不等于0),则释放锁,返回true
                if (c == 0) {
                    free = true;
                    setExclusiveOwnerThread(null);
                }
    //设置当前的锁状态为剩余c
                setState(c);
                return free;
            }
    
        private void unparkSuccessor(Node node) {
            int ws = node.waitStatus;
            if (ws < 0)
                compareAndSetWaitStatus(node, ws, 0);
            Node s = node.next;
            if (s == null || s.waitStatus > 0) {
                s = null;
                for (Node t = tail; t != null && t != node; t = t.prev)
                    if (t.waitStatus <= 0)
                        s = t;
            }
            if (s != null)
                LockSupport.unpark(s.thread);
        }
    //当调用线程的unpark方法后会进入到休眠之前的方法
        final boolean acquireQueued(final Node node, int arg) {
    ...
                for (;;) {
    //唤醒后会进入该自旋方法
    //获取前置节点
                    final Node p = node.predecessor();
    //如果他的前置节点是head节点,则再尝试获取锁
                    if (p == head && tryAcquire(arg)) {
                        setHead(node);
                        p.next = null; // help GC
                        failed = false;
                        return interrupted;
                    }
                }
            }
        }
    
        private void setHead(Node node) {
    //将head修改为该节点的前置节点
            head = node;
    //置空
            node.thread = null;
            node.prev = null;
        }
    
    • 公平锁与非公平锁的差别,
      1、非公平锁在lock调用的时候会直接尝试获取锁,不会看队列前面有没有等待的,公平锁则是要看前面有没有已经在排队的
      非公平锁他尝试获取不到锁之后也会进入CLH队列,如果进入到队列之后就是排队了。这个跟公平锁是一样的
    
        static final class NonfairSync extends Sync {
            private static final long serialVersionUID = 7316153563782823691L;
    
            final void lock() {
    //差异1、非公平锁一进来就会尝试获取锁,如果没有获取到锁才进入队列
                if (compareAndSetState(0, 1))
                    setExclusiveOwnerThread(Thread.currentThread());
                else
                    acquire(1);
            }
    
            protected final boolean tryAcquire(int acquires) {
                return nonfairTryAcquire(acquires);
            }
        }
            final boolean nonfairTryAcquire(int acquires) {
                final Thread current = Thread.currentThread();
                int c = getState();
                if (c == 0) {
                    if (compareAndSetState(0, acquires)) {
                        setExclusiveOwnerThread(current);
                        return true;
                    }
                }
                else if (current == getExclusiveOwnerThread()) {
                    int nextc = c + acquires;
                    if (nextc < 0) // overflow
                        throw new Error("Maximum lock count exceeded");
                    setState(nextc);
                    return true;
                }
                return false;
            }
    
    
        static final class FairSync extends Sync {
            private static final long serialVersionUID = -3000897897090466540L;
    
            final void lock() {
                acquire(1);
            }
            protected final boolean tryAcquire(int acquires) {
                final Thread current = Thread.currentThread();
                int c = getState();
                if (c == 0) {
    //差异2、公平锁这边会判断前面是否还有节点,非公平锁不会判断吗,直接cas尝试获取
                    if (!hasQueuedPredecessors() &&
                        compareAndSetState(0, acquires)) {
                        setExclusiveOwnerThread(current);
                        return true;
                    }
                }
                else if (current == getExclusiveOwnerThread()) {
                    int nextc = c + acquires;
                    if (nextc < 0)
                        throw new Error("Maximum lock count exceeded");
                    setState(nextc);
                    return true;
                }
                return false;
            }
        }
    
    

    相关文章

      网友评论

          本文标题:AQS与ReentrantLock源码

          本文链接:https://www.haomeiwen.com/subject/ltmioktx.html