美文网首页分析方法
ReactomeDB 和KEGG两个数据库的 PI3K-AKT

ReactomeDB 和KEGG两个数据库的 PI3K-AKT

作者: 土豆学生信 | 来源:发表于2019-06-02 18:40 被阅读28次

    1. 首先查看KEGG数据库 PI3K-AKT signaling pathway gene set

    详细说明查看如何拿到 KEGG数据库的 hsa04650 Natural killer cell mediated cytotoxicity这个通路的所有基因名字

    library(KEGGREST)
    listDatabases()#显示KEGGREST所包含的数据内容, 可以在进一步查询中使用这些数据。
    org <- keggList("organism")
    head(org)
    
    gs<-keggGet('hsa04151')
    names(gs[[1]]) # 说明书里发现的哈
    kegggenes <- unlist(lapply(gs[[1]]$GENE,function(x) strsplit(x,';')[[1]][1]))[1:length(genes)%%2 ==1]  
    kegggenes
    png <- keggGet("hsa04151", "image") 
    t <- tempfile()
    library(png)
    writePNG(png, t)
    if (interactive()) browseURL(t)
    
    image.1

    2. 其次查看reactome数据库 PI3K-AKT signaling pathway gene set

    reactome数据库网址:
    https://reactome.org/documentation

    image.2
    输入pi3k/akt检索得到:
    image.3
    发现6条信号通路与PI3K/AKT存在关系,我选取了198203/199418/2219528三条,采用reactome.db包进行提取。
     ## 软件包含注释包,615.9MB好大的包包
    if (!requireNamespace("BiocManager", quietly = TRUE))
      install.packages("BiocManager")
    BiocManager::install("reactome.db")
    library(reactome.db)
    ls("package:reactome.db")
    keytypes(reactome.db)
    #看此物件中的資料之欄位名稱
    columns(reactome.db)
    #直接读取特定key种类的值
    keys(reactome.db, keys ="PATHNAME")
     #最后使用keys來query此annotation database
    AnnotationDbi::select(reactome.db, keys = c("6794"), columns = c("PATHID","PATHNAME"), keytypes="ENTREZID") ## 查看单个基因所在通路
    
    a<- as.list(reactomePATHID2EXTID)$ "R-HSA-198203"
    b<- as.list(reactomePATHID2EXTID)$ "R-HSA-199418"
    c<- as.list(reactomePATHID2EXTID)$ "R-HSA-2219528"
    reagenes <-union(c(a,b), c) ## 取并集
    

    3. 查看交集

    intersect(kegggenes, reagenes)
    ##[1] "1950"   "2069"   "2246"   "2247"   "2248"   "2249"   "8822"   "2251"   "2252"   "2253"   "2254"   "2255"  
    ##[13] "8823"   "2250"   "8817"   "26281"  "27006"  "9965"   "8074"   "4803"   "3630"   "5154"   "5155"   "4254"  
    ##[25] "3082"   "1956"   "2064"   "2065"   "2066"   "2260"   "2263"   "2261"   "2264"   "4914"   "3643"   "5156"  
    ##[37] "5159"   "3815"   "4233"   "2885"   "5594"   "5595"   "3667"   "5879"   "930"    "118788" "5290"   "5293"  
    ##[49] "5291"   "5295"   "5296"   "8503"   "5170"   "7249"   "64223"  "2475"   "6199"   "207"    "208"    "10000" 
    ##[61] "5728"   "117145" "5515"   "5516"   "5519"   "5518"   "5526"   "5527"   "5528"   "5529"   "5525"   "23239" 
    ##[73] "23035"  "2932"   "1026"   "1027"   "2309"   "572"    "842"    "1385"   "3164"   "1147"   "4193"  
    setdiff(kegggenes, reagenes) ## 取kegg数据库中特有元素
    etdiff(reagenes, kegggenes) ## 取ReactomeDB数据库中特有元素
    ##[1] "387"    "8660"   "10718"  "10818"  "145957" "152831" "1839"   "2099"   "2100"   "23396"  "2534"   "2549"  
    ##[13] "29851"  "3084"   "3556"   "3654"   "391"    "3932"   "4615"   "50852"  "51135"  "5305"   "57761"  "5781"  
    ##[25] "5880"   "6714"   "685"    "7189"   "7409"   "79837"  "8394"   "8395"   "8396"   "8870"   "90865"  "9173"  
    ##[37] "9365"   "940"    "941"    "942"    "9542"   "2308"   "253260" "2931"   "4303"   "55615"  "79109"  "84335" 
    

    基因Id转换

    library( "clusterProfiler" )
    library( "org.Hs.eg.db" )
    df <- bitr( intersect(kegggenes, reagenes), fromType = "ENTREZID", toType = c( "SYMBOL" ), OrgDb = org.Hs.eg.db )
    head( df )
    ## ENTREZID SYMBOL
    ## 1     1950    EGF
    ## 2     2069   EREG
    ## 3     2246   FGF1
    ## 4     2247   FGF2
    ## 5     2248   FGF3
    ## 6     2249   FGF4
    

    从以上可以看到kegg数据库 PI3K-AKT signaling pathway gene set 中基因数量更多一些,但是reactome数据库 PI3K-AKT signaling pathway gene set 中是已经按照信号通路分类的,功能方面更具体。

    参考文献:

    1. 信号通路查询,除了KEGG你还知道什么?
    2. 推荐一种简单全能的富集分析工具
    3. kegg富集分析之:KEGGREST包(9大功能)
    4. KEGG数据库介绍
    5. Pathview: An R package for pathway based data integration and visualization
    6. The Pathway Browser
    7. 理解Bioconductor系列(二):AnnotationDbi,決定annotation database的基本結構

    全国巡讲第9、10站-武汉和成都(生信技能树爆款入门课)
    1.3个学生的linux视频学习笔记
    2.生信人应该这样学R语言系列视频学习心得笔记分享
    3.一万人陪你学习GEO数据库挖掘知识(公益视频听课笔4.记分享)
    4.公共数据库挖掘视频学习心得体会
    5.生信小技巧系列第一季完结版视频教程学习笔记分享
    6.人类全外显子测序数据分析视频教程学习笔记
    7.B站的11套生物信息学公益视频配套讲义,练习题及思维导图第一弹
    8.转录组测序数据分析公益视频学习笔记分享

    相关文章

      网友评论

        本文标题:ReactomeDB 和KEGG两个数据库的 PI3K-AKT

        本文链接:https://www.haomeiwen.com/subject/lukztctx.html