美文网首页
动态规划

动态规划

作者: juexin | 来源:发表于2017-04-19 14:58 被阅读0次

    64. Minimum Path Sum

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

    Note: You can only move either down or right at any point in time.

    class Solution {
    public:
        int minPathSum(vector<vector<int>>& grid) {
            int m = grid.size();
            int n = grid[0].size();
            vector<vector<int>> f(m,vector<int>(n,0));
            
            f[0][0] = grid[0][0];
            for(int i=1;i<m;i++)
              f[i][0] = f[i-1][0] + grid[i][0];
            for(int j=1;j<n;j++)
              f[0][j] = f[0][j-1] + grid[0][j];
              
            for(int i=1;i<m;i++)
              for(int j=1;j<n;j++)
              {
                  f[i][j] = min(f[i-1][j],f[i][j-1]) + grid[i][j];
              }
            return f[m-1][n-1];
        }
    };
    

    62. Unique Paths

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

    The robot can only move either down or right at any point in time.
    The robot is trying to reach the bottom-right corner of the grid (marked
    'Finish' in the diagram below).
    How many possible unique paths are there?


    Above is a 3 x 7 grid. How many possible unique paths are there?
    Note: m and n will be at most 100.
    class Solution {
    public:
        int uniquePaths(int m, int n) {
            vector<vector<int>> f(100,vector<int>(100,0));
            
            f[0][0] = 1;
            for(int i=1;i<m;i++)
              f[i][0] = f[i-1][0];
            for(int j=1;j<n;j++)
              f[0][j] = f[0][j-1];
            
            for(int i=1;i<m;i++)
              for(int j=1;j<n;j++)
              {
                  f[i][j] = f[i][j-1] + f[i-1][j];
              }
            return f[m-1][n-1];
        }
    };
    

    63. Unique Paths II

    Follow up for "Unique Paths":

    Now consider if some obstacles are added to the grids. How many unique paths would there be?
    An obstacle and empty space is marked as 1 and 0 respectively in the grid.
    For example,
    There is one obstacle in the middle of a 3x3 grid as illustrated below.

    [
      [0,0,0],
      [0,1,0],
      [0,0,0]
    ]
    

    The total number of unique paths is 2.
    Note: m and n will be at most 100.

    class Solution {
    public:
        int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
            int m = obstacleGrid.size();
            int n = obstacleGrid[0].size();
            
            vector<vector<int>> f(m,vector<int>(n,0));
            if(obstacleGrid[0][0]==0)
              f[0][0] = 1;
            else
              f[0][0] = 0;
            for(int i=1;i<m;i++)
            {
                if(obstacleGrid[i][0]==0)
                  f[i][0] = f[i-1][0];
                else
                  f[i][0] = 0;
            }
            for(int j=1;j<n;j++)
            {
                if(obstacleGrid[0][j]==0)
                  f[0][j] = f[0][j-1];
                else
                  f[0][j] = 0;
            }
            
            for(int i=1;i<m;i++)
              for(int j=1;j<n;j++)
              {
                  if(obstacleGrid[i][j]==0)
                    f[i][j] = f[i-1][j] + f[i][j-1];
                  else
                    f[i][j] = 0;
              }
            return f[m-1][n-1];  
        }
    };
    

    72. Edit Distance

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

    You have the following 3 operations permitted on a word:

    a) Insert a character
    b) Delete a character
    c) Replace a character

    class Solution {
    public:
        int minDistance(string word1, string word2) {
            int m = word1.size();
            int n = word2.size();
            if(m<=0)
              return n;
            if(n<=0)
              return m;
            
            vector<vector<int>> f(m+1,vector<int>(n+1,0));
            //f[i][j]表示一个长为i的字符串word1变为长为j的字符串word2的最短距离
            f[0][0] = 0;//都没有字母
            for(int i=1;i<=m;i++)
            {
                f[i][0] = i;
            }
            for(int j=1;j<=n;j++)
            {
                f[0][j] = j;
            }
            for(int i=1;i<=m;i++)
              for(int j=1;j<=n;j++)
              {
                  if(word1[i-1]==word2[j-1]) //f中的第i个字母,对应的是word1[i-1],第j个字母,对应的是word2[j-1]
                    f[i][j] = f[i-1][j-1];
                  else
                    f[i][j] = min(f[i-1][j-1],min(f[i-1][j],f[i][j-1])) + 1;
              }
            return f[m][n];
        }
    };
    

    115. Distinct Subsequences

    Given a string S and a string T, count the number of distinct subsequences of T in S.

    A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).
    Here is an example:
    S = "rabbbit", T = "rabbit"
    Return 3.

    class Solution {
    public:
        int numDistinct(string s, string t) {
            int m = s.size();
            int n = t.size();
            if(m<n)
              return 0;
            
            vector<vector<int>> f(m+1,vector<int>(n+1,0));
            //f[i][j]表示一个长为i的字符串word1变为长为j的字符串word2的最短距离
            f[0][0] = 1;//都没有字母
            for(int i=1;i<=m;i++)
            {
                f[i][0] = 1;
            }
            for(int j=1;j<=n;j++)
            {
                f[0][j] = 0;
            }
            for(int i=1;i<=m;i++)
              for(int j=1;j<=n;j++)
              {
                  if(s[i-1]!=t[j-1]) //f中的第i个字母,对应的是word1[i-1],第j个字母,对应的是word2[j-1]
                    f[i][j] = f[i-1][j];//删除一个字母
                  else
                    f[i][j] = f[i-1][j-1] + f[i-1][j];//都增加一个字母,或删除s的一个字母
              }
            return f[m][n];
        }
    };
    

    118. Pascal's Triangle

    Given numRows, generate the first numRows of Pascal's triangle.

    For example, given numRows = 5,
    Return

    [
         [1],
        [1,1],
       [1,2,1],
      [1,3,3,1],
     [1,4,6,4,1]
    ]
    
    class Solution {
    public:
        vector<vector<int>> generate(int numRows) {
            vector<int> temp;
            vector<vector<int>> rec(numRows,temp);
            for(int i=0;i<numRows;i++)
              for(int j=0;j<i+1;j++)
                  rec[i].push_back(1);
             
            
            for(int i=1;i<numRows;i++)
                for(int j=1;j<i;j++)
                  rec[i][j] = rec[i-1][j-1] + rec[i-1][j];
            
            return rec;
        }
    };
    

    119. Pascal's Triangle II

    Given an index k, return the kth row of the Pascal's triangle.

    For example, given k = 3,
    Return [1,3,3,1].

    class Solution {
    public:
        vector<int> getRow(int rowIndex) {
            vector<int> temp;
            vector<vector<int>> rec(rowIndex+1,temp);
            for(int i=0;i<rowIndex+1;i++)
              for(int j=0;j<i+1;j++)
                  rec[i].push_back(1);
             
            
            for(int i=1;i<rowIndex+1;i++)
                for(int j=1;j<i;j++)
                  rec[i][j] = rec[i-1][j-1] + rec[i-1][j];
            
            return rec[rowIndex];        
        }
    };
    

    120. Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

    For example, given the following triangle

    [
         [2],
        [3,4],
       [6,5,7],
      [4,1,8,3]
    ]
    

    The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

    class Solution {
    public:
        int minimumTotal(vector<vector<int>>& triangle) {
            int m = triangle.size();
            int result = INT_MAX;
            vector<vector<int>> f(m,vector<int>(m,0));
            
            f[0][0] = triangle[0][0];
            for(int i=1;i<m;i++)
            {
                f[i][0] = f[i-1][0] + triangle[i][0];
                f[i][i] = f[i-1][i-1] + triangle[i][i];
                cout<<f[i][0]<<"--"<<f[i][i]<<endl;
            }
    
            for(int i=1;i<m;i++)
              for(int j=1;j<i;j++)  //j只能到i-1
              {
                  f[i][j] = min(f[i-1][j-1],f[i-1][j]) + triangle[i][j];
              }
            for(int k=0;k<m;k++)
            {
                if(f[m-1][k]<result)
                  result = f[m-1][k];
                cout<<f[m-1][k]<<" ";
            }
            return result;
        }
    };
    

    相关文章

      网友评论

          本文标题:动态规划

          本文链接:https://www.haomeiwen.com/subject/lumczttx.html