美文网首页
objc_class 中 cache 分析

objc_class 中 cache 分析

作者: spades_K | 来源:发表于2020-10-29 10:19 被阅读0次

    cache_t 结构

    ISA指向、类结构中分析过 cache_t 占用的内存大小,今天来分析下它的原理。

    struct cache_t {
        // macOS和模拟器
    #if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_OUTLINED
        explicit_atomic<struct bucket_t *> _buckets;
        explicit_atomic<mask_t> _mask;
        // 64位真机
    #elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16
        // 真机下mask与Buckets写一起的优化
        explicit_atomic<uintptr_t> _maskAndBuckets;
        mask_t _mask_unused;
        // 类似isa联合体的位域
        // How much the mask is shifted by.
        static constexpr uintptr_t maskShift = 48;
        
        ......
    
        // 非64位真机
    #elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4
        explicit_atomic<uintptr_t> _maskAndBuckets;
        mask_t _mask_unused;
        ..... 位域代码 通上
        static constexpr uintptr_t maskBits = 4;
    #else
    #error Unknown cache mask storage type.
    #endif
        
    #if __LP64__
        uint16_t _flags;
    #endif
        uint16_t _occupied;
    ......
    
    

    bucket_t 声明在arm64架构和非arm64架构有不同的定义

    struct bucket_t {
    private:
        // IMP-first is better for arm64e ptrauth and no worse for arm64.
        // SEL-first is better for armv7* and i386 and x86_64.
    #if __arm64__
        explicit_atomic<uintptr_t> _imp;
        explicit_atomic<SEL> _sel;
    #else
        explicit_atomic<SEL> _sel;
        explicit_atomic<uintptr_t> _imp;
    #endif
    .....
    

    从上面分析可以得出 cache_t主要是存储 impsel的,先来定义一个类分析下

    @interface LGPerson : NSObject
    - (void)sayHello;
    - (void)sayHappy;
    @end
    
    int main(int argc, const char * argv[]) {
        @autoreleasepool {
            LGPerson *person = [LGPerson alloc];
            NSLog(@"第一个断点在这里");
            [person sayHappy];
            [person sayHello];
            NSLog(@"第二个断点在这里");
        }
        return 0;
    }
    
    • 第一个断点分析
    (lldb) x/4gx LGPerson.class
    0x1000082a8: 0x0000000100008280 0x000000010034c140
    0x1000082b8: 0x0000000100346440 0x0000801000000000
    (lldb) p (cache_t *)0x1000082b8
    (cache_t *) $1 = 0x00000001000082b8
    (lldb) p *$1
    (cache_t) $2 = {
      _buckets = {
        std::__1::atomic<bucket_t *> = {
          Value = 0x0000000100346440
        }
      }
      _mask = {
        std::__1::atomic<unsigned int> = {
          Value = 0
        }
      }
      _flags = 32784
      _occupied = 0
    }
    (lldb) p $2.buckets()
    (bucket_t *) $3 = 0x0000000100346440
    (lldb) p *$3
    (bucket_t) $4 = {
      _sel = {
        std::__1::atomic<objc_selector *> = (null) {
          Value = (null)
        }
      }
      _imp = {
        std::__1::atomic<unsigned long> = {
          Value = 0
        }
      }
    }
    (lldb) p $4.sel()
    (SEL) $5 = <no value available>
    (lldb) p $4.imp(LGPerson.class)
    (IMP) $6 = 0x0000000000000000
    

    从类结构分析中知道,可以使用首地址的内存偏移获取响应的变量地址,cache只需从首地址偏移16个字节即可得到cache,即 0x1000082a8 变为 0x1000082b8,接下来就类似 bits分析里面的那样找 方法获取 bucket_t,然后通过里面的 sel() 方法获取 sel, imp(Class)(注意入参)方法获取IMP
    Tip: 什么时候用 -> 什么时候用 .
    当当前变量为指针类型的时候用 ->, 不是的话用 .

    • 第二个断点分析
    (lldb) p *$3 
    (bucket_t) $7 = {
      _sel = {
        std::__1::atomic<objc_selector *> = (null) {
          Value = (null)
        }
      }
      _imp = {
        std::__1::atomic<unsigned long> = {
          Value = 0
        }
      }
    }
    

    方法调用了为什么buckets里面还是没变?

    (lldb) p $2.buckets()
    (bucket_t *) $8 = 0x0000000100d046f0
    
    

    原来问题在这里,与上个方法(bucket_t *) $3 = 0x0000000100346440 明显不是一个地址。

    (lldb) p *$8
    (bucket_t) $9 = {
      _sel = {
        std::__1::atomic<objc_selector *> = "" {
          Value = ""
        }
      }
      _imp = {
        std::__1::atomic<unsigned long> = {
          Value = 49080
        }
      }
    }
    
    (lldb) p $9.sel()
    (SEL) $11 = "sayHappy"
    (lldb) p $9.imp(LGPerson.class)
    (IMP) $12 = 0x0000000100003d10 (KCObjc`-[LGPerson sayHappy])
    
    

    调用了2个方法,怎么打印另一个方法呢?回顾类结构分析中数组可以通过指针+1方式获取后面的元素,来试下!

    lldb) p *($8 +1)
    (bucket_t) $13 = {
      _sel = {
        std::__1::atomic<objc_selector *> = "" {
          Value = ""
        }
      }
      _imp = {
        std::__1::atomic<unsigned long> = {
          Value = 48712
        }
      }
    }
    (lldb) p $13.sel()
    (SEL) $14 = "sayHello"
    (lldb) p $13.imp(LGPerson.class)
    (IMP) $15 = 0x0000000100003ce0 (KCObjc`-[LGPerson sayHello])
    (lldb) p *($8 +2)
    (bucket_t) $16 = {
      _sel = {
        std::__1::atomic<objc_selector *> = (null) {
          Value = (null)
        }
      }
      _imp = {
        std::__1::atomic<unsigned long> = {
          Value = 0
        }
      }
    }
    (lldb) p $16.sel()
    (SEL) $17 = <no value available>
    (lldb) p $16.imp(LGPerson.class)
    (IMP) $18 = 0x0000000000000000
    (lldb)
    

    要取指针类型的 $8,能获取到 sayHappyselimp

    脱离源码解析

    创建一个正常的OC项目。

    typedef uint32_t mask_t;  // x86_64 & arm64 asm are less efficient with 16-bits
    
    struct lg_bucket_t {
        SEL _sel;
        IMP _imp;
    };
    
    struct lg_cache_t {
        struct lg_bucket_t * _buckets;
        mask_t _mask;
        uint16_t _flags;
        uint16_t _occupied;
    };
    
    struct lg_class_data_bits_t {
        uintptr_t bits;
    };
    
    struct lg_objc_class {
        Class ISA;
        Class superclass;
        struct lg_cache_t cache;             // formerly cache pointer and vtable
        struct lg_class_data_bits_t bits;    // class_rw_t * plus custom rr/alloc flags
    };
    
    
    int main(int argc, const char * argv[]) {
        @autoreleasepool {
            LGPerson *p  = [LGPerson alloc];
            Class pClass = [LGPerson class];  // objc_clas
            [p say1];
            [p say2];
            [p say3];
            [p say4];
            
            struct lg_objc_class *lg_pClass = (__bridge struct lg_objc_class *)(pClass);
            NSLog(@"%hu - %u",lg_pClass->cache._occupied,lg_pClass->cache._mask);
            for (mask_t i = 0; i<lg_pClass->cache._mask; i++) {
                // 打印获取的 bucket
                struct lg_bucket_t bucket = lg_pClass->cache._buckets[i];
                NSLog(@"%@ - %p",NSStringFromSelector(bucket._sel),bucket._imp);
            }
    
            
            NSLog(@"Hello, World!");
        }
        return 0;
    }
    

    自定义一个 lg_objc_class 结构体和所需的其他结构体,从源码中copy过来关键参数,注意 Class ISA变量,源码工程中的 ISA是从 objc_object中继承过去的。

    先只调用 say1say2方法:

    2020-10-28 10:07:51.135761+0800 003-cache_t脱离源码环境分析[15880:405998] LGPerson say : -[LGPerson say1]
    2020-10-28 10:07:51.136104+0800 003-cache_t脱离源码环境分析[15880:405998] LGPerson say : -[LGPerson say2]
    2020-10-28 10:07:51.136145+0800 003-cache_t脱离源码环境分析[15880:405998] 2 - 3
    2020-10-28 10:07:51.136245+0800 003-cache_t脱离源码环境分析[15880:405998] say1 - 0xb858
    2020-10-28 10:07:51.136341+0800 003-cache_t脱离源码环境分析[15880:405998] say2 - 0xb808
    2020-10-28 10:07:51.136395+0800 003-cache_t脱离源码环境分析[15880:405998] (null) - 0x0
    

    加上调用 say3say4方法:

    2020-10-28 10:09:55.838791+0800 003-cache_t脱离源码环境分析[15904:407473] LGPerson say : -[LGPerson say1]
    2020-10-28 10:09:55.839174+0800 003-cache_t脱离源码环境分析[15904:407473] LGPerson say : -[LGPerson say2]
    2020-10-28 10:09:55.839209+0800 003-cache_t脱离源码环境分析[15904:407473] LGPerson say : -[LGPerson say3]
    2020-10-28 10:09:55.839243+0800 003-cache_t脱离源码环境分析[15904:407473] LGPerson say : -[LGPerson say4]
    2020-10-28 10:09:55.839283+0800 003-cache_t脱离源码环境分析[15904:407473] 2 - 7
    2020-10-28 10:09:55.839400+0800 003-cache_t脱离源码环境分析[15904:407473] say4 - 0xb9b8
    2020-10-28 10:09:55.839452+0800 003-cache_t脱离源码环境分析[15904:407473] (null) - 0x0
    2020-10-28 10:09:55.839507+0800 003-cache_t脱离源码环境分析[15904:407473] say3 - 0xb9e8
    2020-10-28 10:09:55.839532+0800 003-cache_t脱离源码环境分析[15904:407473] (null) - 0x0
    2020-10-28 10:09:55.839552+0800 003-cache_t脱离源码环境分析[15904:407473] (null) - 0x0
    2020-10-28 10:09:55.839570+0800 003-cache_t脱离源码环境分析[15904:407473] (null) - 0x0
    2020-10-28 10:09:55.839626+0800 003-cache_t脱离源码环境分析[15904:407473] (null) - 0x0
    

    对上面的打印我们先提几个问题?
    1、 _mask_occupied 是什么含义?
    2、 为什么调用两个方法和四个方法的 _occupied_mask 数值发生了变化?
    3、 say4 方法的打印为什么在 say3方法前面?
    4、 为什么会有空的打印?

    源码解析

    带着这几个问题,我们去看下源码实现,从哪里下手分析呢?先从方法下手。

    struct cache_t {
    .....
    public:
        static bucket_t *emptyBuckets();
        
        struct bucket_t *buckets();
        mask_t mask();
        mask_t occupied();
        void incrementOccupied();
        void setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask);
        void initializeToEmpty();
    
        unsigned capacity();
        bool isConstantEmptyCache();
        bool canBeFreed();
    .....
    }
    

    既然想知道 occupied 先看下 occupied(),还有一个 incrementOccupied方法里面 有_occupied自增操作,此处下个断点。 [person say1]; 后看下调用顺序。

    mask_t cache_t::occupied() 
    {
        return _occupied;
    }
    
    void cache_t::incrementOccupied() 
    {
        _occupied++;
    }
    
    
    断点调用顺序

    找到 cache_tinsert方法进行分析:

    void cache_t::insert(Class cls, SEL sel, IMP imp, id receiver)
    {
    #if CONFIG_USE_CACHE_LOCK
        cacheUpdateLock.assertLocked();
    #else
        runtimeLock.assertLocked();
    #endif
    
        ASSERT(sel != 0 && cls->isInitialized());
    
        // Use the cache as-is if it is less than 3/4 full 当缓存使用小于 3/4 时
        mask_t newOccupied = occupied() + 1;
        unsigned oldCapacity = capacity(), capacity = oldCapacity;
        // 当occupied() == 0 创建储存空间
        if (slowpath(isConstantEmptyCache())) {
            // Cache is read-only. Replace it.
            if (!capacity) capacity = INIT_CACHE_SIZE; //(1 << INIT_CACHE_SIZE_LOG2 = 1 << 2 = 4)
            // 创建并写入内存 不清理旧的缓存空间
            reallocate(oldCapacity, capacity, /* freeOld */false);
        }
        // 小于等于占用内存的 3/4 时候什么也不做 newOccupied = _occupied +1  CACHE_END_MARKER = 1 所以首次触发 扩展内存时机为缓存第三个方法
        else if (fastpath(newOccupied + CACHE_END_MARKER <= capacity / 4 * 3)) {
            // Cache is less than 3/4 full. Use it as-is.
        }
        else {
            // 内存空间翻倍
            capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;
            // 限制最大开辟空间 2^16
            if (capacity > MAX_CACHE_SIZE) {
                capacity = MAX_CACHE_SIZE;
            }
            // 重新创建并写入内存 清理旧的缓存空间
            reallocate(oldCapacity, capacity, true);
        }
        // 获取当前的buckets
        bucket_t *b = buckets();
        mask_t m = capacity - 1;
        // 通过hash (mask_t)(uintptr_t)sel & mask 算出应该插入的下标
        mask_t begin = cache_hash(sel, m);
        mask_t i = begin;
    
        // Scan for the first unused slot and insert there.
        // There is guaranteed to be an empty slot because the
        // minimum size is 4 and we resized at 3/4 full.
        do {
            // 根据当前 hash算出来的下标位置没有 sel()
            if (fastpath(b[i].sel() == 0)) { 
                // _occupied++
                incrementOccupied();
                b[i].set<Atomic, Encoded>(sel, imp, cls);
                return;
            }
            if (b[i].sel() == sel) { // 当前位置方法等于传入的方法
                // The entry was added to the cache by some other thread
                // before we grabbed the cacheUpdateLock.
                return;
            }
            // i+1 与mask再次进行hash 算出下标 进行循环
        } while (fastpath((i = cache_next(i, m)) != begin));
        // 没存进去 报错
        cache_t::bad_cache(receiver, (SEL)sel, cls);
    }
    
            LGPerson *person = [LGPerson alloc];
            // 断点1
            [person say1];
            // 断点2
            [person say2];
            // 断点3
            [person say3];
    
    • 断点1 添加第一个方法分析,occupied()返回的_occupied0newOccupied = 1,进入 slowpath(isConstantEmptyCache()) 判断条件,capacity = 1<<2 = 4reallocate方法创建并写入缓存,通过 sel = "say1" & capacity - 1 =3 算出下标 1 ,通过 do while循环插入sel, _occupied自增为 1
    (lldb) p buckets()
    (bucket_t *) $0 = 0x0000000100675420
    (lldb) p *$0
    (bucket_t) $1 = {
      _sel = {
        std::__1::atomic<objc_selector *> = (null) {
          Value = (null)
        }
      }
      _imp = {
        std::__1::atomic<unsigned long> = {
          Value = 0
        }
      }
    }
    
    (lldb) p *($0 +1)  // 首地址指针 + 1 指向第二个元素
    (bucket_t) $2 = {
      _sel = {
        std::__1::atomic<objc_selector *> = "" {
          Value = ""
        }
      }
      _imp = {
        std::__1::atomic<unsigned long> = {
          Value = 48752
        }
      }
    }
    (lldb) p $2.sel()
    (SEL) $3 = "say1"
    (lldb) p $2.imp(cls)
    (IMP) $4 = 0x0000000100003c80 (KCObjc`-[LGPerson say1])
    
    
    • 断点2 添加第二个方法分析,occupied()返回的_occupied1newOccupied = 2oldCapacity = 4capacity = 4,进入 fastpath(newOccupied + CACHE_END_MARKER <= capacity / 4 * 3) 判断条件(没有操作),通过 sel = "say2" & capacity - 1 =3 算出下标 2 ,通过 do while循环插入sel, _occupied自增为 2
    (lldb) p *($0 +2)
    (bucket_t) $6 = {
      _sel = {
        std::__1::atomic<objc_selector *> = "" {
          Value = ""
        }
      }
      _imp = {
        std::__1::atomic<unsigned long> = {
          Value = 48704
        }
      }
    }
    (lldb) p $6.sel()
    (SEL) $7 = "say2"
    (lldb) p $6.imp(cls)
    (IMP) $8 = 0x0000000100003cb0 (KCObjc`-[LGPerson say2])
    (lldb) 
    
    • 断点3 添加第三个方法分析,occupied()返回的_occupied2newOccupied= 3oldCapacity = 4capacity = 4,进入 else 判断条件,capacity = 4*2 =8 扩展一倍,限制最大分配空间为 2^16,reallocate() 重新创建内存,并且清理旧的缓存空间 _occupied 被置为 0
      buckets() 获取 (bucket_t *) b = 0x00000001007612f0 已经分配新的内存空间 没有任何缓存 通过 sel = "say3" & capacity - 1 =7 算出下标 7 ,通过 do while循环插入sel,b[7].sel() 不为空,cache_next i+1mask再次进行hash 算出下标 0 进行循环 ,储存成功, _occupied自增为 1
    (lldb) p b[7].sel()
    (SEL) $10 = <no value available>
    (lldb) p b[7].imp(cls)
    (IMP) $11 = 0x0000000000769000 (0x0000000000769000)
    (lldb) p b[0].sel()
    (SEL) $12 = <no value available>
    (lldb) p b[0].sel()
    (SEL) $13 = "say3"
    (lldb) p b[0].imp(cls)
    (IMP) $14 = 0x0000000100003ce0 (KCObjc`-[LGPerson say3])
    (lldb) 
    

    reallocate 方法源码:

    void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld)
    {
        // 首次创建 buckets()中只包含一个空的 imp和sel
        bucket_t *oldBuckets = buckets();
        // 首次创建 也是空的
        bucket_t *newBuckets = allocateBuckets(newCapacity);
    
        // Cache's old contents are not propagated. 
        // This is thought to save cache memory at the cost of extra cache fills.
        // fixme re-measure this
    
        ASSERT(newCapacity > 0);
        ASSERT((uintptr_t)(mask_t)(newCapacity-1) == newCapacity-1);
        // 把newBuckets写入内存
        setBucketsAndMask(newBuckets, newCapacity - 1);
        
        if (freeOld) {
            // 释放旧的内存
            cache_collect_free(oldBuckets, oldCapacity);
        }
    }
    

    setBucketsAndMask 源码:

    void cache_t::setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask)
    {
    #ifdef __arm__  //真机环境
        mega_barrier();
        // 储存
        _buckets.store(newBuckets, memory_order::memory_order_relaxed);
        
        mega_barrier();
        
        _mask.store(newMask, memory_order::memory_order_relaxed);
        _occupied = 0;
    #elif __x86_64__ || i386  // MacOS 或者模拟器
        _buckets.store(newBuckets, memory_order::memory_order_release);
        
        _mask.store(newMask, memory_order::memory_order_release);
        _occupied = 0;
    #else
    #error Don't know how to do setBucketsAndMask on this architecture.
    #endif
    }
    

    问题回答

    1、 _mask_occupied 是什么含义?
    _occupied 为 缓存的 imp - sel的个数,相当于数组中的实际储存量。
    _mask哈希算法掩码,为当前开辟的空间大小 capacity -1

    2、 为什么调用两个方法和四个方法的 _occupied_mask 数值发生了变化?
    当调用 say1say2方法的时候,capacity为4,因为默认开辟空间为 4,没有触发 扩容操作,所以capacity没有发生变化。 _mask4 -1 = 3
    当存入 say3的时候进行了扩容,capacity4*2 = 8,因为是新的内存段 say1say2就没有了,_occupied在此时也被赋值为0,存入say3 _occupied++ = 1 ,存入 say4方法的时候(+1)并没有超过 capacity =83/4_occupied ++ =2_mask为 8-1 = 7
    Tips: 当调用点语法 init 方法 和 say方法一样都会进行缓存。

    3、 say4 方法的打印为什么在 say3方法前面?
    存入方法的时候是根据 maskcapacity -1 & sel 或者 (i+1) & mask 算出来的,结果具有随机性,并不是按顺序排的。

    cache_t::insert 方法流程图

    cache_t:insert 方法解析

    相关文章

      网友评论

          本文标题:objc_class 中 cache 分析

          本文链接:https://www.haomeiwen.com/subject/lvkkvktx.html