美文网首页深度学习
TensorFlow05-CNN实现破解验证码(准确率99.87

TensorFlow05-CNN实现破解验证码(准确率99.87

作者: __流云 | 来源:发表于2018-06-05 11:56 被阅读190次

    学习了这么久终于可以开始动手实现验证码破解了
    不得不说卷积神经网络在图像识别方向真的是核武器级别的神器,验证码识别率高达99.87%!远超人类95%的识别率,niubility!!!

    
    import tensorflow as tf
    import numpy as np
    from PIL import Image
    import random, datetime
    
    
    # 字符长度,验证码长度, 图片高宽
    CHAR_SET_LEN = 10
    MAX_CAPTCHA, IMAGE_HEIGHT, IMAGE_WIDTH = 4, 80, 200
    
    # 日志和模型保存目录
    TRAIN_LOG_PATH, TRAIN_MODEL_PATH = "logs/", "model/fuck_captche.model-1800"
    
    # 训练库位置
    TRAIN_LABLE_PATH, TRAIN_IMGS_PATH = "D:\\verifies\\train\\verfiycodes.txt", "D:\\verifies\\train\\"
    # 测试库位置
    TEST_LABLE_PATH, TEST_IMGS_PATH = "D:\\verifies\\test\\verfiycodes.txt", "D:\\verifies\\test\\"
    
    # x y占位符
    X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
    Y = tf.placeholder(tf.float32, [None, CHAR_SET_LEN * MAX_CAPTCHA])
    keep_prob = tf.placeholder(tf.float32)
    
    
    def _convert2gray(img):
        """
        彩色图片转灰色图片
        :param img:
        :return:
        """
        if len(img.shape)>2:
            r, g, b = img[:, :, 0], img[:, :, 1], img[:, :, 2]
            gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
            return gray
        else:
            return img
    
    
    def _char2pos(c):
        """
        字符串pos
        :param c:
        :return:
        """
        if c == '_':
            k = 62
            return k
        k = ord(c) - 48
        if k > 9:
            k = ord(c) - 55
            if k > 35:
                k = ord(c) - 61
                if k > 61:
                    raise ValueError('No Map')
        return k
    
    
    def _text2vec(text):
        """
        文本转向量
        :param text:
        :return:
        """
        vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
    
        for i, c in enumerate(text):
            idx = i * CHAR_SET_LEN + _char2pos(c)
            vector[idx] = 1
        return vector
    
    
    def _get_captcha_texts(path=TRAIN_LABLE_PATH):
        """
        获取所有训练标签
        :param path:
        :return:
        """
        texts = []
        for i in open(path, 'r'):
            texts.append(i.strip('\n'))
    
        return texts
    
    
    def _get_captcha_text_and_image(index):
        """
        获取验证码和对应的标签
        :param index:
        :return:
        """
        if IS_TRAIN:
            imgs_path = TRAIN_IMGS_PATH + str(index)+".jpg"
            lable = TRAIN_MODEL_TEXTS[index-1]
        else:
            imgs_path = TEST_IMGS_PATH + str(index)+".jpg"
            lable = TEST_MODEL_TEXTS[index-1]
    
        image = np.array(Image.open(imgs_path))
        return lable, image
    
    
    def _get_next_batch(batch_size=60):
        """
        生成一个batch
        :param batch_size:
        :return:
        """
        batch_x = np.zeros([BATCH, 80 * 200])
        batch_y = np.zeros([BATCH, 40])
    
        batch_index = 0
        end_index = batch_size + 1
        start_index = end_index - BATCH
    
        # 测试
        if IS_TRAIN:
            path = TRAIN_IMGS_PATH
        else:
            path = TEST_IMGS_PATH
        for i in range(start_index, end_index):
            text, image = _get_captcha_text_and_image(i)
            image = _convert2gray(image)
    
            # 将图片数组一维化 同时将文本也对应在两个二维组的同一行
            batch_x[batch_index, :] = image.flatten() / 255  # (image.flatten()-128)/128  mean为0
            batch_y[batch_index, :] = _text2vec(text)
            batch_index = batch_index + 1
    
        # 返回该训练批次
        return batch_x, batch_y
    
    
    def cnn(b_alpha=0.1):
        """
        3层卷积神经网络
        :param b_alpha:
        :return:
        """
        x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
    
        wc1 = tf.get_variable(name='wc1', shape=[3, 3, 1, 32],
                              dtype=tf.float32, initializer=tf.contrib.layers.xavier_initializer())
        bc1 = tf.Variable(b_alpha * tf.random_normal([32]))
        conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, wc1, strides=[1, 1, 1, 1], padding='SAME'), bc1)) # 输出大小不变
        conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
        conv1 = tf.nn.dropout(conv1, keep_prob)
    
        wc2 = tf.get_variable(name='wc2', shape=[3, 3, 32, 64],
                              dtype=tf.float32, initializer=tf.contrib.layers.xavier_initializer())
        bc2 = tf.Variable(b_alpha * tf.random_normal([64]))
        conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, wc2, strides=[1, 1, 1, 1], padding='SAME'), bc2))
        conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
        conv2 = tf.nn.dropout(conv2, keep_prob)
    
        wc3 = tf.get_variable(name='wc3', shape=[3, 3, 64, 128],
                              dtype=tf.float32, initializer=tf.contrib.layers.xavier_initializer())
        bc3 = tf.Variable(b_alpha * tf.random_normal([128]))
        conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, wc3, strides=[1, 1, 1, 1], padding='SAME'), bc3))
        conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
        conv3 = tf.nn.dropout(conv3, keep_prob)
    
       # 经过三次卷积后,得到10*25大小的图片,128是上层输入的大小
        wd1 = tf.get_variable(name='wd1', shape=[10*25*128, 1024],
                              dtype=tf.float32, initializer=tf.contrib.layers.xavier_initializer())
        bd1 = tf.Variable(b_alpha * tf.random_normal([1024]))
        dense = tf.reshape(conv3, [-1, 10*25*128])
        dense = tf.nn.relu(tf.add(tf.matmul(dense, wd1), bd1))
        dense = tf.nn.dropout(dense, keep_prob)
    
        wout = tf.get_variable('name', shape=[1024, MAX_CAPTCHA * CHAR_SET_LEN],
                               dtype=tf.float32, initializer=tf.contrib.layers.xavier_initializer())
        bout = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN]))
        out = tf.add(tf.matmul(dense, wout), bout)
        return out
    
    
    def train():
        """
        训练模型函数
        :return:
        """
        output = cnn()
        cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y))
        optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
        predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
        max_idx_p = tf.argmax(predict, 2)
        max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
        correct_pred = tf.equal(max_idx_p, max_idx_l)
        accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
        saver = tf.train.Saver()
        init = tf.global_variables_initializer()
    
        with tf.Session() as sess:
            sess.run(init)
            sess.graph.finalize()
            for step in range(1, 2001):
                start_time = datetime.datetime.now()
    
                batch_x, batch_y = _get_next_batch(BATCH * step)
                _, cost_ = sess.run([optimizer, cost],
                                    feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})
    
                end_time = datetime.datetime.now()
                print("step=%s, cost=%s, spending times=%.2fs"
                      % (step, cost_, (end_time-start_time).microseconds / 1000000))
    
                # 每100步测试一下准确率
                if step % 100 == 0:
                    # 测试数据集使用下一次的数据集
                    batch_x_test, batch_y_test = _get_next_batch(BATCH * (step+1))
                    acc = sess.run(accuracy,
                                   feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 0.75})
                    print("step=%d, 准确率 ------------> %s" % (step, acc))
    
                    # 达到99%准确率就保存model并退出
                    if acc > 0.99:
                        saver.save(sess, TRAIN_MODEL_PATH, global_step=step)
                        break
    
    
    def _fuck_captcha(sess, predict, captcha_image):
        """
        破解验证码方法
        :param captcha_image:
        :return:
        """
        text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})
    
        text = text_list[0].tolist()
        text = "".join(list(map(str, text)))
    
        return text
    
    
    def test():
        """
        测试函数
        :return:
        """
        output = cnn()
        saver = tf.train.Saver()
        predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
    
        with tf.Session() as sess:
            saver.restore(sess, tf.train.latest_checkpoint("model/"))
    
            task_count = 5000
            right_count = 0
            for i in range(task_count):
                text, image = _get_captcha_text_and_image(i+1)
                image = _convert2gray(image)
                image = image.flatten() / 255
                predict_text = _fuck_captcha(sess, predict, image)
                if str(text) == predict_text:
                    right_count += 1
                else:
                    print("【错误】: \t正确值: {}  预测值: {}".format(text, predict_text))
    
            print('正确/共计-----', right_count, '/', task_count)
    
    
    if __name__ == '__main__':
        # 获取所有指定库的标签
        IS_TRAIN = True
        IS_TRAIN = False
        TRAIN_MODEL_TEXTS, TEST_MODEL_TEXTS = [], []
    
        if IS_TRAIN:
            BATCH = 100  # 每次取batch条数据作为训练集
            TRAIN_MODEL_TEXTS = _get_captcha_texts(TRAIN_LABLE_PATH)
            train()
        else:
            BATCH = 2000
            TEST_MODEL_TEXTS = _get_captcha_texts(TEST_LABLE_PATH)
            test()
    
    

    测试模型:5000张图片的准确率:

    【错误】:   正确值: 1574  预测值: 1514
    【错误】:   正确值: 1639  预测值: 1635
    【错误】:   正确值: 6779  预测值: 6719
    【错误】:   正确值: 5711  预测值: 5771
    【错误】:   正确值: 7136  预测值: 7138
    【错误】:   正确值: 7888  预测值: 7883
    【错误】:   正确值: 1425  预测值: 1426
    【错误】:   正确值: 8116  预测值: 3116
    【错误】:   正确值: 6836  预测值: 6236
    【错误】:   正确值: 2678  预测值: 2673
    【错误】:   正确值: 2648  预测值: 2643
    【错误】:   正确值: 9784  预测值: 9781
    【错误】:   正确值: 3244  预测值: 3247
    正确/共计----- 4987 / 5000
    
    

    相关文章

      网友评论

      • 艾瑞克夸:你这5000张测试集跟训练集的图片是一样的吗?
        __流云:训练集和测试集是由同个算法单独分开生成的,图片大小是一样的,图片特征噪点都是随机的
        我用20w的张图片训练的模型,能达到9997/10000的准确度。
        准确率高得太吓人了。

      本文标题:TensorFlow05-CNN实现破解验证码(准确率99.87

      本文链接:https://www.haomeiwen.com/subject/lwepsftx.html