美文网首页
2021-10-26数学建模--神经网络在线绘图工具,流程图绘图

2021-10-26数学建模--神经网络在线绘图工具,流程图绘图

作者: keeeeeenon | 来源:发表于2021-10-26 11:14 被阅读0次

    一、公式王
    网站:https://gongshi.wang/,从此再也不用手敲恶心的数学公式了~
    应该是利用OCR识别图片中的公式,再将其转换为latex和mathML格式。其中mathML格式粘贴到word中,选择‘仅保留文本’,可以完美的显示,在Office和wps切换中,也没有出现错误。
    在我使用的过程中,反应很迅速,也没有出现错误。
    希望大家觉得不错时,可以多给作者打赏!。

    二、神经网络画图工具
    网址:overloaf在线绘图
    使用latex格式绘制神经网络,当然也可以使用latex的tikz进行绘图哈。主界面如下:

    我用它在线绘制LSTM的效果图:

    绘制LSTM网络的latex代码(代码见水印):
    '''
    % Kalman filter system model
    % by Burkart Lingner
    % An example using TikZ/PGF 2.00
    %
    % Features: Decorations, Fit, Layers, Matrices, Styles
    % Tags: Block diagrams, Diagrams
    % Technical area: Electrical engineering

    \documentclass[a4paper,10pt]{article}

    \usepackage[english]{babel}
    \usepackage[T1]{fontenc}
    \usepackage[ansinew]{inputenc}

    \usepackage{lmodern} % font definition
    \usepackage{amsmath} % math fonts
    \usepackage{amsthm}
    \usepackage{amsfonts}

    \usepackage{tikz}

    %%%<
    \usepackage{verbatim}
    \usepackage[active,tightpage]{preview}
    \PreviewEnvironment{tikzpicture}
    \setlength\PreviewBorder{5pt}%
    %%%>

    \begin{comment}
    :Title: Kalman Filter System Model
    :Slug: kalman-filter
    :Author: Burkart Lingner

    This is the system model of the (linear) Kalman filter.

    \end{comment}

    \usetikzlibrary{decorations.pathmorphing} % noisy shapes
    \usetikzlibrary{fit} % fitting shapes to coordinates
    \usetikzlibrary{backgrounds} % drawing the background after the foreground

    \begin{document}

    \begin{figure}[htbp]
    \centering
    % The state vector is represented by a blue circle.
    % "minimum size" makes sure all circles have the same size
    % independently of their contents.
    \tikzstyle{state}=[circle,
    thick,
    minimum size=1.2cm,
    draw=blue!80,
    fill=blue!20]

    % The measurement vector is represented by an orange circle.
    \tikzstyle{measurement}=[circle,
    thick,
    minimum size=1.2cm,
    draw=orange!80,
    fill=orange!25]

    % The control input vector is represented by a purple circle.
    \tikzstyle{input}=[circle,
    thick,
    minimum size=1.2cm,
    draw=purple!80,
    fill=purple!20]

    % The input, state transition, and measurement matrices
    % are represented by gray squares.
    % They have a smaller minimal size for aesthetic reasons.
    \tikzstyle{matrx}=[rectangle,
    thick,
    minimum size=1cm,
    draw=gray!80,
    fill=gray!20]

    % The system and measurement noise are represented by yellow
    % circles with a "noisy" uneven circumference.
    % This requires the TikZ library "decorations.pathmorphing".
    \tikzstyle{noise}=[circle,
    thick,
    minimum size=1.2cm,
    draw=yellow!85!black,
    fill=yellow!40,
    decorate,
    decoration={random steps,
    segment length=2pt,
    amplitude=2pt}]

    % Everything is drawn on underlying gray rectangles with
    % rounded corners.
    \tikzstyle{background}=[rectangle,
    fill=gray!10,
    inner sep=0.2cm,
    rounded corners=5mm]

    \begin{tikzpicture}[>=latex,text height=1.5ex,text depth=0.25ex]
    % "text height" and "text depth" are required to vertically
    % align the labels with and without indices.

    % The various elements are conveniently placed using a matrix:
    \matrix[row sep=0.5cm,column sep=0.5cm] {
    % First line: Control input
    &
    \node (u_k-1) [input]{\mathbf{u}_{k-1}}; &
    &
    \node (u_k) [input]{\mathbf{u}_k}; &
    &
    \node (u_k+1) [input]{\mathbf{u}_{k+1}}; &
    \
    % Second line: System noise & input matrix
    \node (w_k-1) [noise] {\mathbf{w}_{k-1}}; &
    \node (B_k-1) [matrx] {\mathbf{B}}; &
    \node (w_k) [noise] {\mathbf{w}_k}; &
    \node (B_k) [matrx] {\mathbf{B}}; &
    \node (w_k+1) [noise] {\mathbf{w}_{k+1}}; &
    \node (B_k+1) [matrx] {\mathbf{B}}; &
    \
    % Third line: State & state transition matrix
    \node (A_k-2) {\cdots}; &
    \node (x_k-1) [state] {\mathbf{x}_{k-1}}; &
    \node (A_k-1) [matrx] {\mathbf{A}}; &
    \node (x_k) [state] {\mathbf{x}_k}; &
    \node (A_k) [matrx] {\mathbf{A}}; &
    \node (x_k+1) [state] {\mathbf{x}_{k+1}}; &
    \node (A_k+1) {\cdots}; \
    % Fourth line: Measurement noise & measurement matrix
    \node (v_k-1) [noise] {\mathbf{v}_{k-1}}; &
    \node (H_k-1) [matrx] {\mathbf{H}}; &
    \node (v_k) [noise] {\mathbf{v}_k}; &
    \node (H_k) [matrx] {\mathbf{H}}; &
    \node (v_k+1) [noise] {\mathbf{v}_{k+1}}; &
    \node (H_k+1) [matrx] {\mathbf{H}}; &
    \
    % Fifth line: Measurement
    &
    \node (z_k-1) [measurement] {\mathbf{z}_{k-1}}; &
    &
    \node (z_k) [measurement] {\mathbf{z}_k}; &
    &
    \node (z_k+1) [measurement] {\mathbf{z}_{k+1}}; &
    \
    };

    % The diagram elements are now connected through arrows:
    \path[->]
        (A_k-2) edge[thick] (x_k-1) % The main path between the
        (x_k-1) edge[thick] (A_k-1) % states via the state
        (A_k-1) edge[thick] (x_k)       % transition matrices is
        (x_k)   edge[thick] (A_k)       % accentuated.
        (A_k)   edge[thick] (x_k+1) % x -> A -> x -> A -> ...
        (x_k+1) edge[thick] (A_k+1)
        
        (x_k-1) edge (H_k-1)                % Output path x -> H -> z
        (H_k-1) edge (z_k-1)
        (x_k)   edge (H_k)
        (H_k)   edge (z_k)
        (x_k+1) edge (H_k+1)
        (H_k+1) edge (z_k+1)
        
        (v_k-1) edge (z_k-1)                % Output noise v -> z
        (v_k)   edge (z_k)
        (v_k+1) edge (z_k+1)
        
        (w_k-1) edge (x_k-1)                % System noise w -> x
        (w_k)   edge (x_k)
        (w_k+1) edge (x_k+1)
        
        (u_k-1) edge (B_k-1)                % Input path u -> B -> x
        (B_k-1) edge (x_k-1)
        (u_k)   edge (B_k)
        (B_k)   edge (x_k)
        (u_k+1) edge (B_k+1)
        (B_k+1) edge (x_k+1)
        ;
    
    % Now that the diagram has been drawn, background rectangles
    % can be fitted to its elements. This requires the TikZ
    % libraries "fit" and "background".
    % Control input and measurement are labeled. These labels have
    % not been translated to English as "Measurement" instead of
    % "Messung" would not look good due to it being too long a word.
    \begin{pgfonlayer}{background}
        \node [background,
                    fit=(u_k-1) (u_k+1),
                    label=left:Entrance:] {};
        \node [background,
                    fit=(w_k-1) (v_k-1) (A_k+1)] {};
        \node [background,
                    fit=(z_k-1) (z_k+1),
                    label=left:Measure:] {};
    \end{pgfonlayer}
    

    \end{tikzpicture}

    \caption{Kalman filter system model}
    \end{figure}

    This is the system model of the (linear) Kalman filter. At each time
    step the state vector \mathbf{x}_k is propagated to the new state
    estimation \mathbf{x}_{k+1} by multiplication with the constant state
    transition matrix \mathbf{A}. The state vector \mathbf{x}_{k+1} is
    additionally influenced by the control input vector \mathbf{u}_{k+1}
    multiplied by the input matrix \mathbf{B}, and the system noise vector
    \mathbf{w}_{k+1}. The system state cannot be measured directly. The
    measurement vector \mathbf{z}_k consists of the information contained
    within the state vector \mathbf{x}_k multiplied by the measurement
    matrix \mathbf{H}, and the additional measurement noise \mathbf{v}_k.

    \end{document}
    '''
    三、visual-paradigm在线绘图
    还有一个在线绘图网站:visual-paradigm

    网站有很多好看的模板,可修改性强,主界面:

    上面三个就是这次用的很爽的工具了,记录一下😊。
    对了,发现一个研究生数学建模论文收集的网址,分享一下:历年研究生数学建模优秀论文汇总
    ————————————————
    版权声明:本文为CSDN博主「慕木子」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/MumuziD/article/details/108709537

    相关文章

      网友评论

          本文标题:2021-10-26数学建模--神经网络在线绘图工具,流程图绘图

          本文链接:https://www.haomeiwen.com/subject/lwiealtx.html