第一种方式:
package cn.edu360.day5
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
/**
* Created by zx on 2017/10/10.
*/
object CustomSort1 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("CustomSort1").setMaster("local[*]")
val sc = new SparkContext(conf)
//排序规则:首先按照颜值的降序,如果颜值相等,再按照年龄的升序
val users= Array("laoduan 30 99", "laozhao 29 9999", "laozhang 28 98", "laoyang 28 99")
//将Driver端的数据并行化变成RDD
val lines: RDD[String] = sc.parallelize(users)
//切分整理数据
val userRDD: RDD[User] = lines.map(line => {
val fields = line.split(" ")
val name = fields(0)
val age = fields(1).toInt
val fv = fields(2).toInt
//(name, age, fv)
new User(name, age, fv)
})
//不满足要求
//tpRDD.sortBy(tp => tp._3, false)
//将RDD里面装的User类型的数据进行排序
val sorted: RDD[User] = userRDD.sortBy(u => u)
val r = sorted.collect()
println(r.toBuffer)
sc.stop()
}
}
class User(val name: String, val age: Int, val fv: Int) extends Ordered[User] with Serializable {
override def compare(that: User): Int = {
if(this.fv == that.fv) {
this.age - that.age
} else {
-(this.fv - that.fv)
}
}
override def toString: String = s"name: $name, age: $age, fv: $fv"
}
第二种方式
package cn.edu360.day5
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
/**
* Created by zx on 2017/10/10.
*/
object CustomSort2 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("CustomSort2").setMaster("local[*]")
val sc = new SparkContext(conf)
//排序规则:首先按照颜值的降序,如果颜值相等,再按照年龄的升序
val users= Array("laoduan 30 99", "laozhao 29 9999", "laozhang 28 98", "laoyang 28 99")
//将Driver端的数据并行化变成RDD
val lines: RDD[String] = sc.parallelize(users)
//切分整理数据
val tpRDD: RDD[(String, Int, Int)] = lines.map(line => {
val fields = line.split(" ")
val name = fields(0)
val age = fields(1).toInt
val fv = fields(2).toInt
(name, age, fv)
})
//排序(传入了一个排序规则,不会改变数据的格式,只会改变顺序)
val sorted: RDD[(String, Int, Int)] = tpRDD.sortBy(tp => new Boy(tp._2, tp._3))
println(sorted.collect().toBuffer)
sc.stop()
}
}
class Boy(val age: Int, val fv: Int) extends Ordered[Boy] with Serializable {
override def compare(that: Boy): Int = {
if(this.fv == that.fv) {
this.age - that.age
} else {
-(this.fv - that.fv)
}
}
}
第三种方式
package cn.edu360.day5
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
/**
* Created by zx on 2017/10/10.
*/
object CustomSort3 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("CustomSort3").setMaster("local[*]")
val sc = new SparkContext(conf)
//排序规则:首先按照颜值的降序,如果颜值相等,再按照年龄的升序
val users= Array("laoduan 30 99", "laozhao 29 9999", "laozhang 28 98", "laoyang 28 99")
//将Driver端的数据并行化变成RDD
val lines: RDD[String] = sc.parallelize(users)
//切分整理数据
val tpRDD: RDD[(String, Int, Int)] = lines.map(line => {
val fields = line.split(" ")
val name = fields(0)
val age = fields(1).toInt
val fv = fields(2).toInt
(name, age, fv)
})
//排序(传入了一个排序规则,不会改变数据的格式,只会改变顺序)
val sorted: RDD[(String, Int, Int)] = tpRDD.sortBy(tp => Man(tp._2, tp._3))
println(sorted.collect().toBuffer)
sc.stop()
}
}
case class Man(age: Int, fv: Int) extends Ordered[Man] {
override def compare(that: Man): Int = {
if(this.fv == that.fv) {
this.age - that.age
} else {
-(this.fv - that.fv)
}
}
}
第四种方式:
package cn.edu360.day5
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
/**
* Created by zx on 2017/10/10.
*/
object CustomSort4 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("CustomSort4").setMaster("local[*]")
val sc = new SparkContext(conf)
//排序规则:首先按照颜值的降序,如果颜值相等,再按照年龄的升序
val users= Array("laoduan 30 99", "laozhao 29 9999", "laozhang 28 98", "laoyang 28 99")
//将Driver端的数据并行化变成RDD
val lines: RDD[String] = sc.parallelize(users)
//切分整理数据
val tpRDD: RDD[(String, Int, Int)] = lines.map(line => {
val fields = line.split(" ")
val name = fields(0)
val age = fields(1).toInt
val fv = fields(2).toInt
(name, age, fv)
})
//排序(传入了一个排序规则,不会改变数据的格式,只会改变顺序)
import SortRules.OrderingXiaoRou
val sorted: RDD[(String, Int, Int)] = tpRDD.sortBy(tp => XianRou(tp._2, tp._3))
println(sorted.collect().toBuffer)
sc.stop()
}
}
case class XianRou(age: Int, fv: Int)
第五种规则
/**
* Created by zx on 2017/10/10.
*/
object CustomSort5 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("CustomSort5").setMaster("local[*]")
val sc = new SparkContext(conf)
//排序规则:首先按照颜值的降序,如果颜值相等,再按照年龄的升序
val users= Array("laoduan 30 99", "laozhao 29 9999", "laozhang 28 98", "laoyang 28 99")
//将Driver端的数据并行化变成RDD
val lines: RDD[String] = sc.parallelize(users)
//切分整理数据
val tpRDD: RDD[(String, Int, Int)] = lines.map(line => {
val fields = line.split(" ")
val name = fields(0)
val age = fields(1).toInt
val fv = fields(2).toInt
(name, age, fv)
})
//充分利用元组的比较规则,元组的比较规则:先比第一,相等再比第二个
val sorted: RDD[(String, Int, Int)] = tpRDD.sortBy(tp => (-tp._3, tp._2))
println(sorted.collect().toBuffer)
sc.stop()
}
}
在这种规则种我们需要注意的是 元组是可以被排序 的,
第六种
/**
* Created by zx on 2017/10/10.
*/
object CustomSort6 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("CustomSort6").setMaster("local[*]")
val sc = new SparkContext(conf)
//排序规则:首先按照颜值的降序,如果颜值相等,再按照年龄的升序
val users= Array("laoduan 30 99", "laozhao 29 9999", "laozhang 28 98", "laoyang 28 99")
//将Driver端的数据并行化变成RDD
val lines: RDD[String] = sc.parallelize(users)
//切分整理数据
val tpRDD: RDD[(String, Int, Int)] = lines.map(line => {
val fields = line.split(" ")
val name = fields(0)
val age = fields(1).toInt
val fv = fields(2).toInt
(name, age, fv)
})
//充分利用元组的比较规则,元组的比较规则:先比第一,相等再比第二个
//Ordering[(Int, Int)]最终比较的规则格式
//on[(String, Int, Int)]未比较之前的数据格式
//(t =>(-t._3, t._2))怎样将规则转换成想要比较的格式
implicit val rules = Ordering[(Int, Int)].on[(String, Int, Int)](t =>(-t._3, t._2))
val sorted: RDD[(String, Int, Int)] = tpRDD.sortBy(tp => tp)
println(sorted.collect().toBuffer)
sc.stop()
}
}
网友评论