1 CascadeClassifier 级联分类器人脸识别
有两种:haar级联和lbp级联,我用brew安装的,级联文件在/opt/homebrew/Cellar/opencv/4.5.5_2/share/opencv4/haarcascades
里面,haar级联文件大小是900kb左右,lbp级联文件大小是50kb左右。
检测前需要将图像转化成灰度图,并做直方图均衡化处理。
lbp的文件大小、识别速度和效果都要好于haar。
总的来说,人脸检测效果很一般,人脸不动时检测框会闪烁,人脸稍有偏转或遮挡就检测不到。
int myFaceDetect(int argc, char** argv) {
double w = 0, h = 0, fps = 24;
Mat frame;
Mat gray;
Mat res;
VideoCapture cap;
if (!cap.open(0)) {
return 0;
}
w = cap.get(CAP_PROP_FRAME_WIDTH);
h = cap.get(CAP_PROP_FRAME_HEIGHT);
printf("cap w: %f, h: %f\n", w, h);
namedWindow("cam");
while(true) {
auto tick = getTickCount();
// cap >> frame;
cap.read(frame);
if (frame.empty()) {
break;
}
flip(frame, frame, 1);
cvtColor(frame, gray, COLOR_BGRA2GRAY);
equalizeHist(gray, gray);
// auto ccPath = "/opt/homebrew/Cellar/opencv/4.5.5_2/share/opencv4/haarcascades/haarcascade_frontalface_extended.xml";
auto ccPath = "/opt/homebrew/Cellar/opencv/4.5.5_2/share/opencv4/lbpcascades/lbpcascade_frontalface_improved.xml";
CascadeClassifier cc;
if (!cc.load(ccPath)) {
cout << "load CascadeClassifier failed" << endl;
return -1;
}
vector<Rect> faces;
cc.detectMultiScale(gray, faces);
for (int i = 0; i < faces.size(); i++) {
rectangle(frame, faces[i], Scalar(0, 0, 255));
}
imshow("cam", frame);
auto time = (getTickCount() - tick) / getTickFrequency();
printf("handleTime: %f\n", time);
if (waitKey(1000 / fps) == ' ') {
break;
}
}
destroyAllWindows();
return 0;
}
2 DNN 深度神经网络人脸识别
需要下载神经网络模型和描述文件,模型大小为2.7Mb,描述文件大小为35kb
OpenCV的dnn支持caffe和TensorFlow两种模型,我这里用的是TensorFlow的模型。
检测直接用原始图像就行。
人脸检测效果非常好,人脸偏转或者遮挡一半仍能检测到。缺点是计算时间长一点,在移动端会明显一点。
int myDnnFaceDetect(int argc, char** argv) {
double w = 0, h = 0, fps = 24;
Mat frame;
Mat gray;
Mat res;
VideoCapture cap;
if (!cap.open(0)) {
return 0;
}
w = cap.get(CAP_PROP_FRAME_WIDTH);
h = cap.get(CAP_PROP_FRAME_HEIGHT);
printf("cap w: %f, h: %f\n", w, h);
auto pb_path = "/Users/chenrongchao/Downloads/face_detector-main/opencv_face_detector_uint8.pb";
auto pbtext_path = "/Users/chenrongchao/Downloads/face_detector-main/opencv_face_detector.pbtxt";
dnn::Net net = dnn::readNetFromTensorflow(pb_path, pbtext_path);
namedWindow("cam");
while(true) {
auto tick = getTickCount();
// cap >> frame;
cap.read(frame);
if (frame.empty()) {
break;
}
flip(frame, frame, 1);
// cvtColor(frame, gray, COLOR_BGRA2GRAY);
auto blob = dnn::blobFromImage(frame, 1.0, Size2i(300, 300), Scalar(104,177,123),false,false);
net.setInput(blob);
auto probs = net.forward();
Mat detectionMat(probs.size[2], probs.size[3], CV_32F, probs.ptr<float>());
//解析结果
for (int i = 0; i < detectionMat.rows; i++) {
float confidence = detectionMat.at<float>(i, 2);
if (confidence > 0.5) { //提取矩形四个角的坐标
int x1 = static_cast<int>(detectionMat.at<float>(i, 3)*frame.cols);
int y1 = static_cast<int>(detectionMat.at<float>(i, 4)*frame.rows);
int x2 = static_cast<int>(detectionMat.at<float>(i, 5)*frame.cols);
int y2 = static_cast<int>(detectionMat.at<float>(i, 6)*frame.rows);
Rect box(x1, y1, x2 - x1, y2 - y1); //红色矩形框
rectangle(frame, box, Scalar(0, 0, 255), 4, 8, 0); //标记人脸
}
}
imshow("cam", frame);
auto time = (getTickCount() - tick) / getTickFrequency();
printf("handleTime: %f\n", time);
if (waitKey(1000 / fps) == ' ') {
break;
}
}
destroyAllWindows();
return 0;
}
网友评论