定义
屏幕快照 2020-05-18 下午5.34.20.png树(tree)是n(n>=0)个结点的有限集合。当n=0时,该集合满足以下条件:
(1)有且只有一个特殊的结点称为树的根(root),根结点没有直接前驱结点,但有零个或多个直接后继结点。
(2)跟结点之外的其余n-1个结点被分成m(m>0)个互相不相交的集合T1、T2、···、Tm,其中每一个集合Ti(1<=i<=m)本身又是一棵树。树T1,T2,···,Tm称为根节点的子树。
二叉树
二叉树是一种简单又非常重要的树形结构。由于任何数都可以转换为二叉树进行处理,而二叉树又有许多好的性质,非常适合于计算机处理,因此二叉树也是数据结构研究的重点。
二叉树(Binary Tree)是有n个结点的有限集合,该集合或者为空、或者由一个称为根(Root)的结点及两个不相交、被分别称为根结点的左子树和右子树的二叉树组成。当集合为空时,称该二叉树为空二叉树。一颗二叉树中每个结点只能含有0、1或2个孩子结点,而且孩子节点分左、右孩子如下图:
22170695-f4621bde936fb6bc.png
满二叉树:在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子结点都在同一层上,这样的一棵二叉树称为满二叉树。如下图:
22170695-8248bcdc9c45826a.png
二叉树循序存储
二叉树存储实现
typedef CElemType SqBiTree[MAX_TREE_SIZE]; /* 0号单元存储根结点 */
CElemType Nil = 0; /*设整型以0为空 或者以 INT_MAX(65535)*/
typedef struct {
int level; //结点层
int order; //本层的序号(按照满二叉树给定序号规则)
}Position;
#pragma mark -- 二叉树的基本操作
//6.1 visit
Status visit(CElemType c){
printf("%d ",c);
return OK;
}
//6.2 构造空二叉树T,因为T是固定数组,不会改变.
Status InitBiTree(SqBiTree T){
for (int i = 0; i < MAX_TREE_SIZE; i++) {
//将二叉树初始化值置空
T[i] = Nil;
}
return OK;
}
//6.3 按层序次序输入二叉树中的结点值(字符型或整型),构造顺序存储的二叉树T
Status CreateBiTree(SqBiTree T){
int i = 0;
//printf("按层序输入结点的值(整型),0表示空结点, 输入999结束.结点数<=%d\n",MAX_TREE_SIZE);
/*
1 -->1
2 3 -->2
4 5 6 7 -->3
8 9 10 -->4
1 2 3 4 5 6 7 8 9 10 Nil Nil Nil
*/
while (i < 10) {
T[i] = i+1;
printf("%d ",T[i]);
//结点不为空,且无双亲结点
if (i != 0 && T[(i+1)/2-1] == Nil && T[i] != Nil) {
printf("出现无双亲的非根结点%d\n",T[i]);
exit(ERROR);
}
i++;
}
//将空赋值给T的后面的结点
while (i < MAX_TREE_SIZE) {
T[i] = Nil;
i++;
}
return OK;
}
二叉树链式存储
typedef char CElemType;
CElemType Nil=' '; /* 字符型以空格符为空 */
typedef struct BiTNode /* 结点结构 */
{
CElemType data; /* 结点数据 */
struct BiTNode *lchild,*rchild; /* 左右孩子指针 */
}BiTNode,*BiTree;
/* 7.2 构造空二叉树T */
Status InitBiTree(BiTree *T)
{
*T=NULL;
return OK;
}
/*7.4 创建二叉树
按前序输入二叉树中的结点值(字符),#表示空树;
*/
void CreateBiTree(BiTree *T){
CElemType ch;
//获取字符
ch = str[indexs++];
//判断当前字符是否为'#'
if (ch == '#') {
*T = NULL;
}else
{
//创建新的结点
*T = (BiTree)malloc(sizeof(BiTNode));
//是否创建成功
if (!*T) {
exit(OVERFLOW);
}
/* 生成根结点 */
(*T)->data = ch;
/* 构造左子树 */
CreateBiTree(&(*T)->lchild);
/* 构造右子树 */
CreateBiTree(&(*T)->rchild);
}
}
链式二叉树便利
前序便利
若⼆二叉树为空,则空操作返回; 否则先访问根结点,然后前序遍历左⼦子树,在前序 遍历右⼦子树
/*
7.8 前序递归遍历T
初始条件:二叉树T存在;
操作结果: 前序递归遍历T
*/
void PreOrderTraverse(BiTree T)
{
if(T==NULL)
return;
printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
PreOrderTraverse(T->lchild); /* 再先序遍历左子树 */
PreOrderTraverse(T->rchild); /* 最后先序遍历右子树 */
}
中序便利
若⼆二叉树为空,则空操作返回; 否则从根结点开始(注意并不不是先访问根结点), 中序遍历根结点的左⼦子树,然后是访问根结点,最后中序遍历右⼦子树.
/*
7.9 中序递归遍历T
初始条件:二叉树T存在;
操作结果: 中序递归遍历T
*/
void InOrderTraverse(BiTree T)
{
if(T==NULL)
return ;
InOrderTraverse(T->lchild); /* 中序遍历左子树 */
printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
InOrderTraverse(T->rchild); /* 最后中序遍历右子树 */
}
后序便利
#pragma mark--二叉树遍历
/*
7.10 后序递归遍历T
初始条件:二叉树T存在;
操作结果: 中序递归遍历T
*/
void PostOrderTraverse(BiTree T)
{
if(T==NULL)
return;
PostOrderTraverse(T->lchild); /* 先后序遍历左子树 */
PostOrderTraverse(T->rchild); /* 再后序遍历右子树 */
printf("%c",T->data);/* 显示结点数据,可以更改为其它对结点操作 */
}
网友评论