上一节介绍了最简单的一种二分查找,接下来讲几种二分查找的变形问题。
有这样一个说法:“十个二分九个错”。二分查找虽然原理极其简单,但是想要写出没有 Bug 的二分查找并不容易。
4 种常见的二分查找变形问题
-
查找第一个值等于给定值的元素
-
查找最后一个值等于给定值的元素
-
查找第一个大于等于给定值的元素
-
查找最后一个小于等于给定值的元素
为了简化讲解,今天的内容,都以数据是从小到大排列为前提,如果你要处理的数据是从大到小排列的,解决思路也是一样的。
变体一:查找第一个值等于给定值的元素
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] > value) {
high = mid - 1;
} else if (a[mid] < value) {
low = mid + 1;
} else {
if ((mid == 0) || (a[mid - 1] != value))
return mid;
else high = mid - 1;
}
}
return -1;
}
变体二:查找最后一个值等于给定值的元素
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] > value) {
high = mid - 1;
} else if (a[mid] < value) {
low = mid + 1;
} else {
if ((mid == n - 1) || (a[mid + 1] != value))
return mid;
else low = mid + 1;
}
}
return -1;
}
变体三:查找第一个大于等于给定值的元素
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] >= value) {
if ((mid == 0) || (a[mid - 1] < value))
return mid;
else {
high = mid - 1;
}
} else {
low = mid + 1;
}
}
return -1;
}
变体四:查找最后一个小于等于给定值的元素
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] > value) {
high = mid - 1;
} else {
if ((mid == n - 1) || (a[mid + 1] > value))
return mid;
else {
low = mid + 1;
}
}
}
return -1;
}
开篇解答
假设我们有 12 万条这样的 IP 区间与归属地的对应关系,如何快速定位出一个 IP 地址的归属地?
现在这个问题应该很简单了。如果 IP 区间与归属地的对应关系不经常更新,我们可以先预处理这 12 万条数据,让其按照起始IP 从小到大排序。如何来排序呢?
我们知道,IP 地址可以转化为 32 位的整型数。所以,我们可以将起始地址,按照对应的整型值的大小关系,从小到大进行排序。
然后,这个问题就可以转化为我刚讲的第四种变形问题“在有序数组中,查找最后一个小于等于某个给定值的元素”了。
当我们要查询某个 IP 归属地时,我们可以先通过二分查找,找到最后一个起始 IP 小于等于这个 IP 的 IP 区间,然后,检查这个 IP 是否在这个 IP 区间内,如果在,我们就取出对应的归属地显示;如果不在,就返回未查找到。
小结
上一节说过,凡是用二分查找能解决的,绝大部分我们更倾向于用散列表或者二叉查找树。即便是二分查找在内存使用上更节省,但是毕竟内存如此紧缺的情况并不多。那二分查找真的没什么用处了吗?
实际上,上一节讲的求“值等于给定值”的二分查找确实不怎么会被用到,二分查找更适合用在“近似”查找问题,在这类问题上,二分查找的优势更加明显。比如今天讲的这几种变体问题,用其他数据结构,比如散列表、二叉树,就比较难实现了。
变体的二分查找算法写起来非常烧脑,很容易因为细节处理不好而产生 Bug,这些容易出错的细节有:终止条件、区间上下界更新方法、返回值选择。
课后思考
如果有序数组是一个循环有序数组,比如 4,5,6,1,2,3。针对这种情况,如何实现一个求“值等于给定值”的二分查找算法呢?
网友评论