美文网首页深度学习
目标函数的总结与整理

目标函数的总结与整理

作者: 大川无敌 | 来源:发表于2017-10-10 19:57 被阅读123次

返回主页 laurdawn

博客园
首页
新随笔
联系
订阅
管理

随笔 - 7 文章 - 0 评论 - 0

深度学习笔记 目标函数的总结与整理

(作者还处于小白阶段,,,一下皆是自行搜索总结的结果,像信息论还处于学习阶段,暂时无法给出相关解释,还请各位大神给予相关指点,谢谢)  
  目标函数,或称损失函数,是网络中的性能函数,也是编译一个模型必须的两个参数之一。由于损失函数种类众多,下面以keras官网手册的为例。
在官方keras.io里面,有如下资料:
mean_squared_error或mse

mean_absolute_error或mae

mean_absolute_percentage_error或mape

mean_squared_logarithmic_error或msle

squared_hinge

hinge

binary_crossentropy(亦称作对数损失,logloss)

categorical_crossentropy:亦称作多类的对数损失,注意使用该目标函数时,需要将标签转化为形如(nb_samples, nb_classes)
的二值序列

sparse_categorical_crossentrop:如上,但接受稀疏标签。注意,使用该函数时仍然需要你的标签与输出值的维度相同,你可能需要在标签数据上增加一个维度:np.expand_dims(y,-1)

kullback_leibler_divergence:从预测值概率分布Q到真值概率分布P的信息增益,用以度量两个分布的差异.

cosine_proximity:即预测值与真实标签的余弦距离平均值的相反数

mean_squared_error
  顾名思义,意为均方误差,也称标准差,缩写为MSE,可以反映一个数据集的离散程度。
  标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方误差。
  公式:

  公式意义:可以理解为一个从n维空间的一个点到一条直线的距离的函数。(此为在图形上的理解,关键看个人怎么理解了)
mean_absolute_error
  译为平均绝对误差,缩写MAE。
  平均绝对误差是所有单个观测值与算术平均值的偏差的绝对值的平均。
  公式
(fi
是预测值,yi
是实际值,绝对误差
)

mean_absolute_percentage_error
  译为平均绝对百分比误差 ,缩写MAPE。
  公式:
(At
表示实际值,
F
t

表示预测值)

mean_squared_logarithmic_error
  译为均方对数误差,缩写MSLE。
  公式:

(n是整个数据集的观测值,pi
为预测值,ai
为真实值)

squared_hinge
  公式为max(0,1-y_true*y_pred)^2.mean(axis=-1),取1减去预测值与实际值的乘积的结果与0比相对大的值的平方的累加均值。

hinge
  公式为为max(0,1-y_truey_pred).mean(axis=-1),取1减去预测值与实际值的乘积的结果与0比相对大的值的累加均值。
  Hinge Loss 最常用在 SVM 中的最大化间隔分类中,
  对可能的输出 t = ±1 和分类器分数 y,预测值 y 的 hinge loss 定义如下:
  L(y) = max(0,1-t
y)  看到 y 应当是分类器决策函数的“原始”输出,而不是最终的类标。例如,在线性的 SVM 中

y = w*x+b

可以看出当 ty 有相同的符号时(意味着 y 预测出正确的分类)
  |y|>=1

此时的 hinge loss
  L(y) = 0

但是如果它们的符号相反
  L(y)则会根据 y 线性增加 one-sided error。(译自wiki)
binary_crossentropy
  即对数损失函数,log loss,与sigmoid相对应的损失函数。
  公式:L(Y,P(Y|X)) = -logP(Y|X)
  该函数主要用来做极大似然估计的,这样做会方便计算。因为极大似然估计用来求导会非常的麻烦,一般是求对数然后求导再求极值点。
  损失函数一般是每条数据的损失之和,恰好取了对数,就可以把每个损失相加起来。负号的意思是极大似然估计对应最小损失。
categorical_crossentropy
  多分类的对数损失函数,与softmax分类器相对应的损失函数,理同上。
  tip:此损失函数与上一类同属对数损失函数,sigmoid和softmax的区别主要是,sigmoid用于二分类,softmax用于多分类(小编还在入门阶段,,对于两种对数损失函数的区别不甚清楚,推导也不大懂,欢迎大神补充,谢谢)。
sparse_categorical_crossentrop
  在上面的多分类的对数损失函数的基础上,增加了稀疏性(即数据中多包含一定0数据的数据集),如目录所说,需要对数据标签添加一个维度np.expand_dims(y,-1)。
kullback_leibler_divergence
  (译自WIKI)
  对于离散随机变量,其概率分布PQ的KL散度可按下式定义为

即按概率P求得的PQ的对数差的平均值。KL散度仅当概率PQ各自总和均为1,且对于任何i皆满足
  Q(i)>0P(i)>0时,才有定义。式中出现0Ln0的情况,其值按0处理。
  对于连续随机变量,其概率分布PQ可按积分方式定义为

其中pq分别表示分布PQ的密度。
  更一般的,若PQ为集合X的概率测度,且Q关于P绝对连续,则从PQ的KL散度定义为

其中,假定右侧的表达形式存在,则
Q关于P的R–N导数。
  相应的,若P关于Q绝对连续,则

即为P关于Q的相对熵,用以度量两个分布的差异。

cosine_proximity
  此方法用余弦来判断两个向量的相似性。
  设向量 A = (A1,A2,...,An),B = (B1,B2,...,Bn),则有

  
  
  余弦值的范围在[-1,1]之间,值越趋近于1,代表两个向量的方向越趋近于0,他们的方向更加一致。相应的相似度也越高。

分类: 深度学习

好文要顶 关注我 收藏该文


laurdawn关注 - 0粉丝 - 0

+加关注

0
0

« 上一篇:java调用linux管道信息的误区

posted @ 2016-09-07 14:55 laurdawn 阅读(7473) 评论(0) 编辑 收藏

刷新评论刷新页面返回顶部
注册用户登录后才能发表评论,请 登录 或 注册,访问网站首页。

【推荐】50万行VC++源码: 大型组态工控、电力仿真CAD与GIS源码库【推荐】搭建微信小程序 就选腾讯云【推荐】报表开发有捷径:快速设计轻松集成,数据可视化和交互

华为云1009
最新IT新闻京东战略投资人常斌:零售业的未来是让零售变得无界· Node.js基金会官方的开发者认证准备就绪· 为了让你相信无人车很安全,英特尔请这位NBA明星球员代言· 阿里研究院:10大关键词解读中国互联网创新飞跃的五年· 张忠谋:用30年把台积电打造成为全球最大芯片代工商» 更多新闻...

阿里云1001
最新知识库文章实用VPC虚拟私有云设计原则· 如何阅读计算机科学类的书· Google 及其云智慧· 做到这一点,你也可以成为优秀的程序员· 写给立志做码农的大学生
» 更多知识库文章...

公告
昵称:laurdawn园龄:1年3个月粉丝:0关注:0+加关注

<
2017年10月







24
25
26
27
28
29
30

1
2
3
4
5
6
7

8
9
10
11
12
13
14

15
16
17
18
19
20
21

22
23
24
25
26
27
28

29
30
31
1
2
3
4

搜索

常用链接
我的随笔
我的评论
我的参与
最新评论
我的标签

随笔分类
javase(5)
linux命令(1)
深度学习(1)

随笔档案
2016年9月 (1)
2016年8月 (1)
2016年7月 (5)

阅读排行榜
1. 深度学习笔记 目标函数的总结与整理(7473)
2. 在控制台列出桌面文件及文件大小,按修改时间排序(53)
3. PrintWriter类(27)
4. java调用linux管道信息的误区(23)
5. 接口回调(22)

Copyright ©2017 laurdawn

相关文章

  • 目标函数的总结与整理

    博客园首页新随笔联系订阅管理 随笔 - 7 文章 - 0 评论 - 0 深度学习笔记 目标函数的总结与整理 (...

  • 【JavaScript基础】看我如何解释函数防抖与函数节流

    【JavaScript基础】看我如何解释函数防抖与函数节流 博客说明 文章所涉及的资料来自互联网整理和个人总结,意...

  • 利用时间

    今天应该充分的利用时间,把落下的整理工作整理完成,年底考评之前,要完成一次总结。 定好目标,按照目标整理完成,质量...

  • 2018-01-05

    【年度检视】20180105 丘李平2017总结与2018梦想目标 【年度检视】2017总结与2018梦想目标 ...

  • 总结与目标

    凡事不逼自己一把,怎么知道自己能不能做呢? 这两年断断续续,时写时停,也有些文字落在电脑里。只是些自己一时的心情写...

  • 总结与目标

    又是一年的开始,这是今年头一篇写作,总结过去,展望未来,还是订些小目标吧。 匆匆一年,时光飞逝,在2020年算是平...

  • P254-字符串的排列

    排列总结: 字符串的全排列和组合算法 1.递归实现 2.非递归实现 qsort函数、sort函数 (精心整理篇) ...

  • 赢中考Day8/236每日复盘2022.10.19

    目标 1、数学三角函数 2、反比例函数 3、相似三角形 记录 反思 总结

  • javascript中的bind应该怎么用?

    bind() 函数会创建一个新函数(称为绑定函数),新函数与被调函数(绑定函数的目标函数)具有相同的函数体(在 E...

  • 学习R记录 <- 函数

    对应《学习R》中第六章,学习之后整理。 本章目标 函数由什么组成,怎么样编写函数 变量的作用域 函数 R允许用户自...

网友评论

    本文标题:目标函数的总结与整理

    本文链接:https://www.haomeiwen.com/subject/maybyxtx.html