美文网首页
pandans_数据过滤与排序

pandans_数据过滤与排序

作者: 敬子v | 来源:发表于2023-01-15 19:34 被阅读0次

    数据源:链接: https://pan.baidu.com/s/1EFqJFXf70t2Rubkh6D19aw 提取码: syqg
    探索2012欧洲杯数据
    数据源示例

    步骤1 - 导入必要的库

    import pandas as pd

    步骤2 - 从以下地址导入数据集

    path1='pandas_exercise\exercise_data\Euro2012_stats.csv'

    步骤3 - 将数据集命名为euro12

    euro12=pd.read_csv(path1)
    print(euro12.head())

    步骤4 只选取 Goals 这一列

    print(euro12.Goals)

    步骤5 有多少球队参与了2012欧洲杯?

    print(euro12.shape[0])

    步骤6 该数据集中一共有多少列(columns)?

    print(euro12.info())

    步骤7 将数据集中的列Team, Yellow Cards和Red Cards单独存为一个名叫discipline的数据框

    discipline=euro12[['Team','Yellow Cards','Red Cards']]
    print(discipline)

    步骤8 对数据框discipline按照先Red Cards再Yellow Cards进行排序

    discipline.sort_values(['Red Cards','Yellow Cards'],ascending=False,inplace=True)
    print(discipline)

    步骤9 计算每个球队拿到的黄牌数的平均值

    print(discipline['Yellow Cards'].mean())

    步骤10 找到进球数Goals超过6的球队数据

    print(euro12[euro12.Goals>6])

    步骤11 选取以字母G开头的球队数据 .str.startswith

    print(euro12[euro12.Team.str.startswith('G')])

    步骤12 选取前7列 取值 .iloc[:,0:7]

    print(euro12.iloc[:,0:7])

    步骤13 选取除了最后3列之外的全部列 .iloc[:,:-3]

    print(euro12.iloc[:,:-3])

    步骤14 找到英格兰(England)、意大利(Italy)和俄罗斯(Russia)的射正率(Shooting Accuracy)

    loc(条件,所取得列)
    print(euro12.loc[euro12.Team.isin(['England','Italy','Russia']),['Team','Shooting Accuracy']])

    # 步骤3
              Team  Goals  Shots on target  ...  Subs on Subs off Players Used
    0         Croatia      4               13  ...        9        9           16
    1  Czech Republic      4               13  ...       11       11           19
    2         Denmark      4               10  ...        7        7           15
    3         England      5               11  ...       11       11           16
    4          France      3               22  ...       11       11           19
    [5 rows x 35 columns]
    # 步骤5
    0      4
    1      4
    2      4
    3      5
    4      3
    5     10
    6      5
    7      6
    8      2
    9      2
    10     6
    11     1
    12     5
    13    12
    14     5
    15     2
    Name: Goals, dtype: int64
    # 步骤6
    16
    # 步骤7
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 16 entries, 0 to 15
    Data columns (total 35 columns):
     #   Column                      Non-Null Count  Dtype  
    ---  ------                      --------------  -----  
     0   Team                        16 non-null     object 
     1   Goals                       16 non-null     int64  
     2   Shots on target             16 non-null     int64  
     3   Shots off target            16 non-null     int64  
     4   Shooting Accuracy           16 non-null     object 
     5   % Goals-to-shots            16 non-null     object 
     6   Total shots (inc. Blocked)  16 non-null     int64  
     7   Hit Woodwork                16 non-null     int64  
     8   Penalty goals               16 non-null     int64  
     9   Penalties not scored        16 non-null     int64  
     10  Headed goals                16 non-null     int64  
     11  Passes                      16 non-null     int64  
     12  Passes completed            16 non-null     int64  
     13  Passing Accuracy            16 non-null     object 
     14  Touches                     16 non-null     int64  
     15  Crosses                     16 non-null     int64  
     16  Dribbles                    16 non-null     int64  
     17  Corners Taken               16 non-null     int64  
     18  Tackles                     16 non-null     int64  
     19  Clearances                  16 non-null     int64  
     20  Interceptions               16 non-null     int64  
     21  Clearances off line         15 non-null     float64
     22  Clean Sheets                16 non-null     int64  
     23  Blocks                      16 non-null     int64  
     24  Goals conceded              16 non-null     int64  
     25  Saves made                  16 non-null     int64  
     26  Saves-to-shots ratio        16 non-null     object 
     27  Fouls Won                   16 non-null     int64  
     28  Fouls Conceded              16 non-null     int64  
     29  Offsides                    16 non-null     int64  
     30  Yellow Cards                16 non-null     int64  
     31  Red Cards                   16 non-null     int64  
     32  Subs on                     16 non-null     int64  
     33  Subs off                    16 non-null     int64  
     34  Players Used                16 non-null     int64  
    dtypes: float64(1), int64(29), object(5)
    memory usage: 4.5+ KB
    None
    # 步骤8
                      Team  Yellow Cards  Red Cards
    6                Greece             9          1
    9                Poland             7          1
    11  Republic of Ireland             6          1
    7                 Italy            16          0
    10             Portugal            12          0
    13                Spain            11          0
    0               Croatia             9          0
    1        Czech Republic             7          0
    14               Sweden             7          0
    4                France             6          0
    12               Russia             6          0
    3               England             5          0
    8           Netherlands             5          0
    15              Ukraine             5          0
    2               Denmark             4          0
    5               Germany             4          0
    
    # 步骤9
    7.4375
    # 步骤10
           Team  Goals  Shots on target  ...  Subs on Subs off Players Used
    5   Germany     10               32  ...       15       15           17
    13    Spain     12               42  ...       17       17           18
    [2 rows x 35 columns]
    # 步骤11
          Team  Goals  Shots on target  ...  Subs on Subs off Players Used
    5  Germany     10               32  ...       15       15           17
    6   Greece      5                8  ...       12       12           20
    [2 rows x 35 columns]
    # 步骤12
                       Team  Goals  ...  % Goals-to-shots  Total shots (inc. Blocked)
    0               Croatia      4  ...             16.0%                          32
    1        Czech Republic      4  ...             12.9%                          39
    2               Denmark      4  ...             20.0%                          27
    3               England      5  ...             17.2%                          40
    4                France      3  ...              6.5%                          65
    5               Germany     10  ...             15.6%                          80
    6                Greece      5  ...             19.2%                          32
    7                 Italy      6  ...              7.5%                         110
    8           Netherlands      2  ...              4.1%                          60
    9                Poland      2  ...              5.2%                          48
    10             Portugal      6  ...              9.3%                          82
    11  Republic of Ireland      1  ...              5.2%                          28
    12               Russia      5  ...             12.5%                          59
    13                Spain     12  ...             16.0%                         100
    14               Sweden      5  ...             13.8%                          39
    15              Ukraine      2  ...              6.0%                          38
    [16 rows x 7 columns]
    # 步骤13
                       Team  Goals  ...  Yellow Cards  Red Cards
    0               Croatia      4  ...             9          0
    1        Czech Republic      4  ...             7          0
    2               Denmark      4  ...             4          0
    3               England      5  ...             5          0
    4                France      3  ...             6          0
    5               Germany     10  ...             4          0
    6                Greece      5  ...             9          1
    7                 Italy      6  ...            16          0
    8           Netherlands      2  ...             5          0
    9                Poland      2  ...             7          1
    10             Portugal      6  ...            12          0
    11  Republic of Ireland      1  ...             6          1
    12               Russia      5  ...             6          0
    13                Spain     12  ...            11          0
    14               Sweden      5  ...             7          0
    15              Ukraine      2  ...             5          0
    [16 rows x 32 columns]
    # 步骤14
           Team Shooting Accuracy
    3   England             50.0%
    7     Italy             43.0%
    12   Russia             22.5%
    
    

    相关文章

      网友评论

          本文标题:pandans_数据过滤与排序

          本文链接:https://www.haomeiwen.com/subject/mbpacdtx.html