import java.util.Map;
import java.util.Objects;
public class HashMap<K, V> {
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
static final int MAXIMUM_CAPACITY = 1 << 30;
static final float DEFAULT_LOAD_FACTOR = 0.75f;
static final int TREEIFY_THRESHOLD = 8;
static final int UNTREEIFY_THRESHOLD = 6;
static final int MIN_TREEIFY_CAPACITY = 64;
static class Node<K, V> implements Map.Entry<K, V> {
final int hash;
final K key;
V value;
Node<K, V> next;
public Node(int hash, K key, V value, Node<K, V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public K getKey() {
return key;
}
public V getValue() {
return value;
}
public final String toString() {
return key + "=" + value;
}
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this) {
return true;
}
if (o instanceof Map.Entry) {
Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) {
return true;
}
}
return false;
}
}
static final int hash(Object key) {
int h;
return key == null ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
// 6
// ob 0000 0000 0000 0000 0000 0000 0000 0110 - 1
// ob 0000 0000 0000 0000 0000 0000 0000 0101 >>>1
// ob 0000 0000 0000 0000 0000 0000 0000 0010 |
// ob 0000 0000 0000 0000 0000 0000 0000 0111
// ob 0000 0000 0000 0000 0000 0000 0000 0001 >>>2
// ob 0000 0000 0000 0000 0000 0000 0000 0111 + 1
// ob 0000 0000 0000 0000 0000 0000 0000 1000 = 8
static final int tableSizeFor(int capacity) {
int n = capacity - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
transient Node<K, V>[] table;
transient int size;
transient int modCount;
int threshold;
final float loadFactor;
public HashMap(int initCapacity, float loadFactor) {
if (initCapacity < 0) {
throw new IllegalArgumentException("Illegal initial capacity: " + initCapacity);
}
if (loadFactor <= 0 || Float.isNaN(loadFactor)) {
throw new IllegalArgumentException("Illegal load loadFactor: " + loadFactor);
}
this.loadFactor = loadFactor;
this.threshold = initCapacity;
}
public HashMap(int initCapacity) {
this(initCapacity, DEFAULT_LOAD_FACTOR);
}
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
}
public int size() {
return this.size;
}
public boolean isEmpty() {
return this.size == 0;
}
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
private V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
Node<K, V>[] tab;
Node<K, V> p;
int n, i;
//如果table还没有初始化
if ((tab = table) == null || (n = tab.length) == 0) {
n = (tab = resize()).length;
}
//如果table[index] == null,此位置还没有元素
if ((p = tab[i = (n - 1) & hash]) == null) {
tab[i] = newNode(hash, key, value, null);
} else {
//如果不为空,那么该index处产生了hash冲突
Node<K, V> e;
K k;
if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) {
//hash 以及 key都相等
e = p;
} else if (p instanceof TreeNode) {
//如果该位置是treeNode 则插入treeNode
e = ((TreeNode) p).putTreeVal(this, tab, hash, key, value);
} else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
//下一个链表节点为null的话,新增一个链表节点
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) {
//该条链表是否需要树化
treeifyBin(tab, hash);
}
break;
}
//判断是否与下一个节点hash相等以及是否是同一个key
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) {
break;
}
//将p重新赋值为下一个节点 进入下一次循环
p = e;
}
}
if (e != null) {
V oldValue = e.value;
if(!onlyIfAbsent || oldValue == null){
e.value = value;
}
//子类去实现
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold) {
resize();
}
return null;
}
//树化操作
private void treeifyBin(Node<K, V>[] tab, int hash) {
}
private Node<K, V> newNode(int hash, K key, V value, Node<K, V> next) {
return new Node<>(hash, key, value, next);
}
private Node<K, V>[] resize() {
return new Node[0];
}
static final class TreeNode<K, V> extends Node<K, V> {
Node<K, V> before, after;
TreeNode<K, V> parent;
TreeNode<K, V> left;
TreeNode<K, V> right;
TreeNode<K, V> prev;
boolean red;
TreeNode(int hash, K key, V val, Node<K, V> next) {
super(hash, key, val, next);
}
public Node<K, V> putTreeVal(HashMap<K, V> map, Node<K, V>[] tab, int h, K k, V v) {
return null;
}
}
void afterNodeAccess(Node<K,V> p) { }
}
网友评论