12年iOS开发老人传授我的底层GCD技术总结
引言
今天主要是给大家分享一个致力于iOS开发12年的老人对于iOS底层GCD的一个技术总结。主要内容是GCD部分的栅栏函数底层实现,信号量和调度组的应用。知识是死的,但是人是有温情了,最重要是快乐!废话不多说,干货时间。
调度组
调度组最直接的作用就是:控制任务执行顺序
调度组的使用
dispatch_group_create :创建调度组
dispatch_group_async :进组任务
dispatch_group_notify :进组任务执行完毕通知
dispatch_group_wait :进组任务执行等待时间
搭配使用
dispatch_group_enter :进组
dispatch_group_leave :出组
例子 // 自定义并发队列
dispatch_queue_t queue = dispatch_queue_create("superman", DISPATCH_QUEUE_CONCURRENT);
// 创建组
dispatch_group_t group = dispatch_group_create();
// 添加任务
for (int i = 0; i < 5; i++) {
dispatch_group_async(group, queue, ^{
NSLog(@"开始执行任务 -- %d", i);
sleep(2);
NSLog(@"任务-%d执行完毕", i);
});
}
// 添加任务
for (int i = 0; i < 3; i++) {
dispatch_group_enter(group);
dispatch_async(queue, ^{
NSLog(@"开始执行终极任务 -- %d", i);
sleep(1);
NSLog(@"终极任务-%d执行完毕", i);
dispatch_group_leave(group);
});
}
// 任务执行完毕回调
dispatch_group_notify(group, queue, ^{
NSLog(@"任务都执行完了哦");
});
复制代码
\
我们发现 , dispatch_group_async = dispatch_group_enter + dispatch_group_leave, 不知你有没有发现,并且 出组 进组 搭配不对称的话,会奔溃掉。并且调度组是如何来实现所有的任务都执行完毕再执行最后的通知的呢?带着这些疑问,我们看下其内部实现是怎样的。
dispatch_group_create
dispatch_group_t
dispatch_group_create(void)
{
return _dispatch_group_create_with_count(0);
}
复制代码
_dispatch_group_create_with_count
static inline dispatch_group_t
_dispatch_group_create_with_count(uint32_t n)
{
dispatch_group_t dg = _dispatch_object_alloc(DISPATCH_VTABLE(group),
sizeof(struct dispatch_group_s));
dg->do_next = DISPATCH_OBJECT_LISTLESS;
dg->do_targetq = _dispatch_get_default_queue(false);
if (n) {
os_atomic_store2o(dg, dg_bits,
(uint32_t)-n * DISPATCH_GROUP_VALUE_INTERVAL, relaxed);
os_atomic_store2o(dg, do_ref_cnt, 1, relaxed); // <rdar://22318411>
}
return dg;
}
...
#define os_atomic_store2o(p, f, v, m) \
os_atomic_store(&(p)->f, (v), m)
...
#define os_atomic_store(p, v, m) \
atomic_store_explicit(_os_atomic_c11_atomic(p), v, memory_order_##m)
...
#define atomic_store_explicit __c11_atomic_store
-------
在头文件<stdatomic.h>中定义
| ---------------------------------------------------------------------------
| void atomic_store(volatile A * obj,需要C);
原子替换`obj`指向的原子变量的值`desired`。该操作是原子写入操作。
------
复制代码
dispatch_group_enter
void
dispatch_group_enter(dispatch_group_t dg)
{
// The value is decremented on a 32bits wide atomic so that the carry
// for the 0 -> -1 transition is not propagated to the upper 32bits.
uint32_t old_bits = os_atomic_sub_orig2o(dg, dg_bits,
DISPATCH_GROUP_VALUE_INTERVAL, acquire);
uint32_t old_value = old_bits & DISPATCH_GROUP_VALUE_MASK;
if (unlikely(old_value == 0)) {
_dispatch_retain(dg); // <rdar://problem/22318411>
}
if (unlikely(old_value == DISPATCH_GROUP_VALUE_MAX)) {
DISPATCH_CLIENT_CRASH(old_bits,
"Too many nested calls to dispatch_group_enter()");
}
}
复制代码
dispatch_group_leave
void
dispatch_group_leave(dispatch_group_t dg)
{
// 该值在64位宽的原子上递增
// the -1 -> 0 转换以原子的方式递增生成
uint64_t new_state, old_state = os_atomic_add_orig2o(dg, dg_state,
DISPATCH_GROUP_VALUE_INTERVAL, release);
uint32_t old_value = (uint32_t)(old_state & DISPATCH_GROUP_VALUE_MASK);
if (unlikely(old_value == DISPATCH_GROUP_VALUE_1)) {
old_state += DISPATCH_GROUP_VALUE_INTERVAL;
do {
new_state = old_state;
if ((old_state & DISPATCH_GROUP_VALUE_MASK) == 0) {
new_state &= ~DISPATCH_GROUP_HAS_WAITERS;
new_state &= ~DISPATCH_GROUP_HAS_NOTIFS;
} else {
// If the group was entered again since the atomic_add above,
// we can't clear the waiters bit anymore as we don't know for
// which generation the waiters are for
new_state &= ~DISPATCH_GROUP_HAS_NOTIFS;
}
if (old_state == new_state) break;
} while (unlikely(!os_atomic_cmpxchgv2o(dg, dg_state,
old_state, new_state, &old_state, relaxed)));
// 唤醒的是 notify
return _dispatch_group_wake(dg, old_state, true);
}
if (unlikely(old_value == 0)) {
DISPATCH_CLIENT_CRASH((uintptr_t)old_value,
"Unbalanced call to dispatch_group_leave()");
}
}
...
#define DISPATCH_GROUP_GEN_MASK 0xffffffff00000000ULL
#define DISPATCH_GROUP_VALUE_MASK 0x00000000fffffffcULL
#define DISPATCH_GROUP_VALUE_INTERVAL 0x0000000000000004ULL
#define DISPATCH_GROUP_VALUE_1 DISPATCH_GROUP_VALUE_MASK
#define DISPATCH_GROUP_VALUE_MAX DISPATCH_GROUP_VALUE_INTERVAL
#define DISPATCH_GROUP_HAS_NOTIFS 0x0000000000000002ULL
#define DISPATCH_GROUP_HAS_WAITERS 0x0000000000000001ULL
复制代码
最后,如果 old_value 和 DISPATCH_GROUP_VALUE_1 相等,
最后会唤醒 notify 的执行。
dispatch_group_async
void
dispatch_group_async(dispatch_group_t dg, dispatch_queue_t dq,
dispatch_block_t db)
{
dispatch_continuation_t dc = _dispatch_continuation_alloc();
uintptr_t dc_flags = DC_FLAG_CONSUME | DC_FLAG_GROUP_ASYNC;
dispatch_qos_t qos;
qos = _dispatch_continuation_init(dc, dq, db, 0, dc_flags);
_dispatch_continuation_group_async(dg, dq, dc, qos);
}
复制代码
代码执行来到了_dispatch_continuation_group_async
_dispatch_continuation_group_async
在这里调用了 dispatch_group_enter()
static inline void
_dispatch_continuation_group_async(dispatch_group_t dg, dispatch_queue_t dq,
dispatch_continuation_t dc, dispatch_qos_t qos)
{
dispatch_group_enter(dg);
dc->dc_data = dg;
_dispatch_continuation_async(dq, dc, qos, dc->dc_flags);
}
复制代码
那么,在调用完block执行后,才会有 leave 的调用所以,我们在自定义并发队列执行的最后 找到了leave:
static inline void
_dispatch_continuation_with_group_invoke(dispatch_continuation_t dc)
{
struct dispatch_object_s *dou = dc->dc_data;
unsigned long type = dx_type(dou);
if (type == DISPATCH_GROUP_TYPE) {
_dispatch_client_callout(dc->dc_ctxt, dc->dc_func);
_dispatch_trace_item_complete(dc);
dispatch_group_leave((dispatch_group_t)dou);
} else {
DISPATCH_INTERNAL_CRASH(dx_type(dou), "Unexpected object type");
}
}
复制代码
这也就解释了为什么dispatch_group_async 使用后
有 dispatch_group_enter + dispatch_group_leave 的效果。
\
总结:作为十几年的老码农,以上都是他自己的一些经验和感想,欢迎大家点
评指正,也希望能够对萌新有所帮助。顺便求一波关注,需要学习资料
和咨询编程问题的同学,可以点击领取资料
网友评论